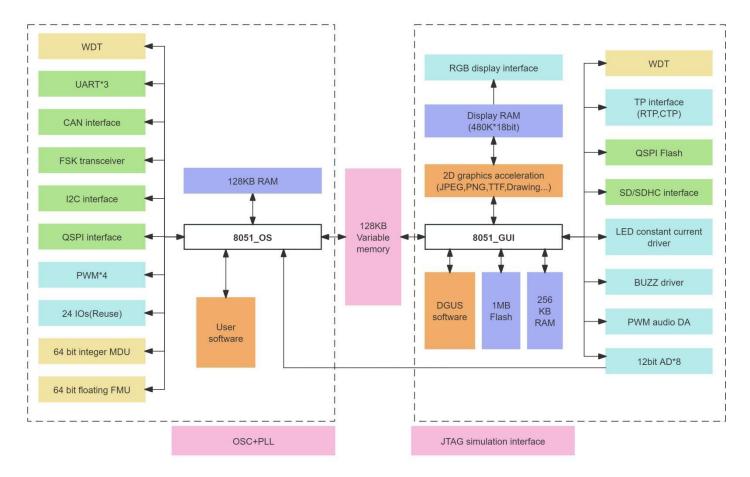


# **T5F0 ASIC Application Development Guide**





# Contents


| 1. Overview                                             | 3  |
|---------------------------------------------------------|----|
| 1.1 IC Function Module Schematic                        | 3  |
| 1.2 Performance Introduction                            | 4  |
| 2. Hardware Design                                      | 5  |
| 2.1 IC Pin Definition                                   | 5  |
| 2.2 Package Size                                        | 9  |
| 2.3 Basic Performance Parameters                        | 10 |
| 2.4 Notices for Hardware Design                         | 11 |
| 3. Programming Instructions for OS CPU Function Module  |    |
| 3.1 Initial Configuration                               | 12 |
| 3.2 Memory                                              | 13 |
| 3.2.1 Code Memory (64KBytes)                            | 14 |
| 3.2.2 Variable Memory (128KBytes)                       |    |
| 3.2.3 Data Storage (Up to 96KBytes)                     | 17 |
| 3.2.4 Extended SFR Register                             | 18 |
| 3.3 Integer and Floating-point Operating Unit (MDU,FMU) |    |
| 3.4 Timer                                               | 22 |
| 3.5 Watchdog Timer (WDT)                                |    |
| 3.6 Pulse Width Modulation Module (PWM)                 | 24 |
| 3.7 IO Port                                             |    |
| 3.8 AD Data Reading                                     |    |
| 3.9 UART Communication Interface                        |    |
| 3.9.1 UART2 Interface                                   |    |
| 3.9.2 UART4 Interface                                   | 29 |
| 3.9.3 UART5 Interface                                   |    |
| 3.10 CAN Communication Interface                        |    |
| 3.11 FSK Transceiver                                    | 33 |
| 3.12 QSPI Bus DMA Operation                             |    |
| 3.13 Interrupt System                                   |    |
| 3.13.1 Interrupt Control SFR                            |    |
| 3.13.2 Interrupt Priority                               |    |
| 3.14 8051 Instruction Set for OS CPU Core               |    |
| 4. Simulation Debugging                                 |    |
| 5. EK043F Evaluation Board                              | 41 |
| Revision Records                                        | 43 |



# 1. Overview

T5F0 is a cost-effective dual-core ASIC designed for small size LCD screens.

# **1.1 IC Function Module Schematic**





#### **1.2 Performance Introduction**

- (1) Adopting the most mature and stable 8051 core,with a 1T single instruction cycle design, it can operate at 75MHz (low power) or 300MHz (high performance).
- (2) A single CPU core (GUI CPU) runs the GUI system, with an extremely cool and smooth UI:
  - Built in graphics memory,18bit (262K) colors display,resolution support up to 480\*480 pixels (DGUS configuration) or 800 \* 600 pixels(TA instruction set).
  - 2D hardware acceleration, including drawing, JPEG, PNG icon decompression, vector font library text display.
  - Supports resistive or capacitive touch screens, with a maximum touch tapping speed of 400Hz.
  - 128K bytes of variable memory space, memory interface and OS CPU core exchange data, and UI control is extremely simple.
  - 1 channel low-cost 250KHz PWM boost voltage type LED constant current drive.
  - 1 channel 16 bit 32Ksps PWM digital DA output, achieving high signal-to-noise ratio sound quality restoration.
  - High speed QSPI memory interface: supports a single 128Mbit SPI NOR or 1Gbit SPI NAND.
  - SD card interface download and configuration engineering.

(3) Running user code on a separate CPU core (OS CPU), no user CPU required during use:

- 128K bytes of code and memory space (typical configuration of 64KB code,64KB XRAM memory).
- 64bit integer arithmetic unit (MDU), including 64bit MAC and 64bit divider.
- 64bit single precision, double precision floating-point arithmetic unit (FMU), including floating-point to integer conversion, floating-point addition, subtraction, multiplication, and division, and MAC.
- Built in software WDT,3-channel 16 bit Timers,4 channels of 16 bit resolution carrier frequency adjustable PWM.
- 24-channel IOs,3-channel UARTs,1-channel CAN,up to 6-channel 12bit A/D are available to users.
- 1-channel hardware QSPI interface, supporting DMA operation.
- 1-channel FSK transceiver interface enables easy high-speed, long-distance, and power carrier transmission.
- 17-channel interrupt signals support up to four levels of interrupt nesting, including:

1-channel ADC interruption,1-channel FSK communication interruption,and 1-channel CAN communication interruption;

2-channel external interrupts (EX0,EX1) can be configured for low-level or down edge triggering;

3-channel timer interrupt: T0,T1,T2;

4-channel PWM interrupts: PWM0,PWM1,PWM2,PWM3;

5-channel UART interrupts: UART0 (Tx and Rx), UART2Rx, UART2Rx, UART3Tx, UART3Rx.

- Support IAP online simulation and debugging, with unlimited number of breakpoints; Code can be upgraded online through the DGUS system.
- (4) 1Mbytes of on-chip Flash, patented encryption technology from DWIN, ensures code and data security, and eliminates counterfeiting and cloning.
- (5) Working temperature range: -40 °C ~+85 °C (We can customize IC with the working temperature range of -55 °C -105 °C).
- (6) Low power consumption, strong anti-interference ability, can work stably on double-side designed PCB, and easily pass EMC/EMI testing.
- (7) Using a 0.35mm spacing of 9×9mm QFN88 small package, the design and production are simple.



# 2. Hardware Design

# 2.1 IC Pin Definition

T5F0 ASIC adopts QFN88 packaging (9×9×0.9 mm,PIN spacing 0.35mm),and the pin arrangement is shown in Figure 2.1-1.

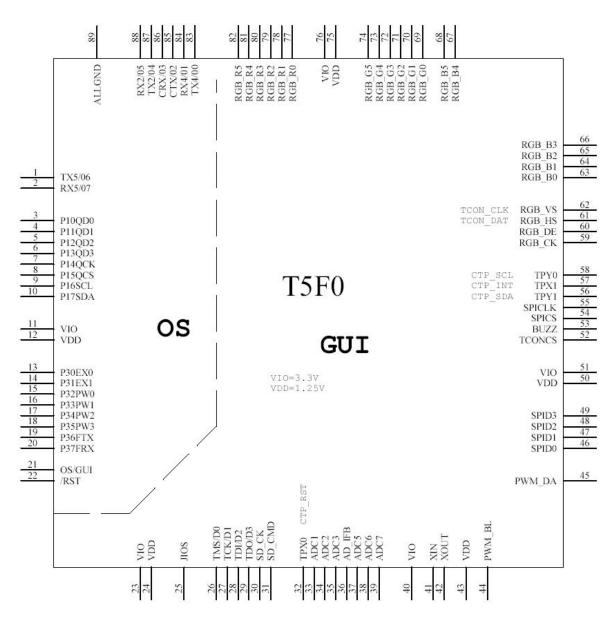
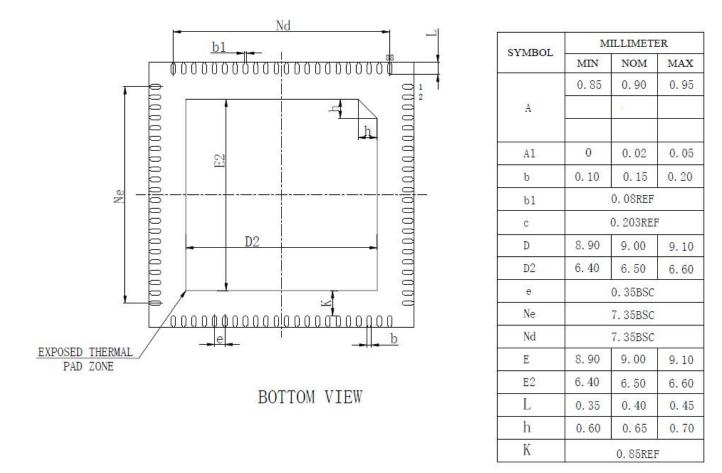



Figure 2.1-1 T5F0 pin arrangement



| CPU    | PIN | Function 1 | Description                                                                               | Function 2      | Description                                                                                                              |
|--------|-----|------------|-------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| OS     | 83  | TX4        | UART4 output,connects an<br>external 10K resistor to pull the<br>level up to 3.3VP0.0I/O  |                 | Ι/Ο                                                                                                                      |
| OS     | 84  | RX4        | UART4 input,connects an<br>external 10K resistor to pull the P0.1 I/O<br>level up to 3.3V |                 | Ι/Ο                                                                                                                      |
| OS     | 85  | СТХ        | CAN interface output                                                                      | P0.2            | I/O                                                                                                                      |
| OS     | 86  | CRX        | CAN interface input                                                                       | P0.3            | I/O                                                                                                                      |
| OS     | 87  | TX2        | UART2 output,connects an<br>external 10K resistor to pull the<br>level up to 3.3V         | P0.4            | 1/0                                                                                                                      |
| OS     | 88  | RX2        | UART2 input,connects an<br>external 10K resistor to pull the<br>level up to 3.3V          | P0.5            | Ι/Ο                                                                                                                      |
| OS     | 1   | ТХ5        | UART5 output,connects an<br>external 10K resistor to pull the<br>level up to 3.3V         | P0.6            | Ι/Ο                                                                                                                      |
| OS     | 2   | RX5        | UART5 input,connects an<br>external 10K resistor to pull the<br>level up to 3.3V          | P0.7            | Ι/Ο                                                                                                                      |
| OS     | 3   | QSPI_D0    | 4-wire QSPI data                                                                          | P1.0            | I/O                                                                                                                      |
| OS     | 4   | QSPI_D1    | interface,supporting read and write of variable memory                                    | P1.1            | Ι/Ο                                                                                                                      |
| OS     | 5   | QSPI_D2    | hardware DMA,and the main frequency can be configured.                                    | P1.2            | Ι/Ο                                                                                                                      |
| OS     | 6   | QSPI_D3    | When using the QSPI interface,                                                            | P1.3            | I/O                                                                                                                      |
| OS     | 7   | QSPI_CLK   | QSPI-CS requires an external<br>10K resistor to pull the level up                         | P1.4            | I/O                                                                                                                      |
| OS     | 8   | QSPI_CS    | to 3.3V                                                                                   | P1.5            | I/O                                                                                                                      |
| OS     | 9   | RTC_SCL    | I2C interface clock for external<br>RTC                                                   | P1.6            | Ι/Ο                                                                                                                      |
| OS     | 10  | RTC_SDA    | I2C interface data for external RTC                                                       | P1.7            | Ι/Ο                                                                                                                      |
| OS     | 11  | VIO        | 3.3V IO voltage                                                                           |                 |                                                                                                                          |
| OS     | 12  | VDD        | 1.25V CPU core voltage                                                                    |                 |                                                                                                                          |
| OS     | 13  | EX0        | External interrupt 0 input                                                                | P3.0            | I/O                                                                                                                      |
| OS     | 14  | EX1        | External interrupt 1 input                                                                | P3.1            | I/O                                                                                                                      |
| OS     | 15  | PWM0       | PWM0 output                                                                               | P3.2            | I/O                                                                                                                      |
| OS     | 16  | PWM1       | PWM1 output                                                                               | P3.3            | I/O                                                                                                                      |
| OS     | 17  | PWM2       | PWM2 output                                                                               | P3.4            | I/O                                                                                                                      |
| OS     | 18  | PWM3       | PWM3 output                                                                               | P3.5            | I/O                                                                                                                      |
| OS     | 19  | FTX        | FSK bus data output                                                                       | P3.6            | I/O                                                                                                                      |
| OS     | 20  | FRX        | FSK bus data input                                                                        | P3.7            | I/O                                                                                                                      |
| System | 21  | OS/GUI     | 0=GUI JTAG,1=OS JTAG;<br>Detect during reset                                              | FTR             | The FSK bus sends and receives<br>control signals,and when using<br>it,an external 10K pull-down<br>resistor is required |
| System | 22  | RST        | System reset input,and low level r<br>and a 10K resistor to GND                           | eset. T5F0 is r | equired to connect a 470pF capacitor                                                                                     |




| GUI | 23 | VIO    | 3.3V IO voltage                                                                                                                                                             |                |                                                                               |  |  |  |
|-----|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|--|--|--|
| GUI | 24 | VDD    | 1.25V CPU core voltage                                                                                                                                                      |                |                                                                               |  |  |  |
| GUI | 25 | JIOS   | 0: PIN26~PIN29 are JTAG interfaces; 1: PIN26~PIN29 are the data buses of the S card interface                                                                               |                |                                                                               |  |  |  |
| GUI | 26 | TMS    |                                                                                                                                                                             | SD_D0          | SD/SDHC interface data bus with maximum speed of 4MHz                         |  |  |  |
| GUI | 27 | тск    | JTAG interface,selecting<br>whether to connect to GUI CPU                                                                                                                   | SD_D1          |                                                                               |  |  |  |
| GUI | 28 | TDI    | or OS CPU based on the level                                                                                                                                                | SD_D2          |                                                                               |  |  |  |
| GUI | 29 | TDO    | of the OS/GUI pin during reset                                                                                                                                              | SD_D3          | -                                                                             |  |  |  |
| GUI | 30 | SD_CK  | Connect a 22pF capacitor to ground near the SD card interface                                                                                                               | PA_EN          | Enabling signal of external amplifie<br>for music playback                    |  |  |  |
| GUI | 31 | SD_CMD | Connect an external 10K<br>resistor to pull the voltage level<br>to 3.3V                                                                                                    |                |                                                                               |  |  |  |
| GUI | 32 | TPX0   | 4-wire RTP interface<br>X0,externally connected to a<br>220K pull-down resistor                                                                                             | CTP_RS<br>T    | CTP interface reset signal output                                             |  |  |  |
| GUI | 33 | TPY0   | 4-wire RTP interface<br>Y0,externally connected to a<br>220K pull-down resistor                                                                                             | ADC1           | ADC1 input                                                                    |  |  |  |
| GUI | 34 | TPX1   | 4-wire RTP interface<br>X1,externally connected to a<br>220K pull-down resistor                                                                                             | ADC2           | ADC2 input                                                                    |  |  |  |
| GUI | 35 | TPY1   | 4-wire RTP interface<br>Y1,externally connected to a<br>220K pull-down resistor                                                                                             | ADC3           | ADC3 input                                                                    |  |  |  |
| GUI | 36 | AD_IFB | The backlight current feedback voltage by LED backlight driver.<br>0-400mV corresponds to 0% -100% brightness of the backlight.<br>Near T5F0,connect a 102 capacitor to GND |                |                                                                               |  |  |  |
| GUI | 37 | ADC5   | ADC5 input                                                                                                                                                                  |                |                                                                               |  |  |  |
| GUI | 38 | ADC6   | ADC6 input                                                                                                                                                                  |                |                                                                               |  |  |  |
| GUI | 39 | ADC7   | ADC7 input                                                                                                                                                                  |                |                                                                               |  |  |  |
| GUI | 40 | VIO    | 3.3V IO voltage,also serving as A should not exceed 50mV                                                                                                                    | D conversion r | eference voltage (Vref),ripple voltage                                        |  |  |  |
| GUI | 41 | XIN    | Externally connected                                                                                                                                                        |                |                                                                               |  |  |  |
| GUI | 42 | XOUT   | 11.0592MHz crystal oscillator                                                                                                                                               |                |                                                                               |  |  |  |
| GUI | 43 | VDD    | 1.25V CPU core voltage                                                                                                                                                      |                |                                                                               |  |  |  |
| GUI | 44 | PWM_BL | PWM control signal by LED backlight driver,with the frequency of 250KHz. It needs to be connected to an external 10K pull-down resistor                                     |                |                                                                               |  |  |  |
| GUI | 45 | PWM_DA |                                                                                                                                                                             |                | uency of 32KHz,requires an external<br>o analog signal and then connect it to |  |  |  |
| GUI | 46 | SPI_D0 |                                                                                                                                                                             |                |                                                                               |  |  |  |
| GUI | 47 | SPI_D1 | QSPI bus for external connection                                                                                                                                            | to SPI Flash,  | with the bus frequency of 50MHz. It i                                         |  |  |  |
| GUI | 48 | SPI_D2 | recommended to connect magnet                                                                                                                                               |                |                                                                               |  |  |  |
| GUI | 49 | SPI_D3 |                                                                                                                                                                             |                |                                                                               |  |  |  |
| GUI | 50 | VDD    | 3.3V IO voltage                                                                                                                                                             |                |                                                                               |  |  |  |
| GUI | 51 | VIO    | 1.25V CPU core voltage                                                                                                                                                      |                |                                                                               |  |  |  |



| GUI    | 52 | TCON_CS  |                                                                                                                                                            |          |                                                                                                          |  |  |
|--------|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|--|--|
| GUI    | 53 | BUZZ     | buzzer drive, needs to be connected to an external 10K pull-down resistor                                                                                  |          |                                                                                                          |  |  |
| GUI    | 54 | SPI_CS   | QSPI bus chip selection signal,externally connected to SPI Flash,and it needs to be connected to a 10K external resistor to pull the voltage level to 3.3V |          |                                                                                                          |  |  |
| GUI    | 55 | SPI_CLK  | QSPI bus clock signal, externally connected to SPI Flash. Recommended to conne<br>magnetic beads in series to reduce EMI                                   |          |                                                                                                          |  |  |
| GUI    | 56 | TPY1     | 4-wire RTP interface Y1                                                                                                                                    | TCON_SDA | CTP interface data,when using<br>it,connect an external 4.7K<br>resistor to pull the level up to<br>3.3V |  |  |
| GUI    | 57 | TPX1     | 4-wire RTP interface X1                                                                                                                                    | TCON_INT | CTP interface interrupt signal                                                                           |  |  |
| GUI    | 58 | TPY0     | 4-wire RTP interface Y0                                                                                                                                    | TCON_SCL | CTP interface clock                                                                                      |  |  |
| GUI    | 59 | RGB_PCLK |                                                                                                                                                            |          |                                                                                                          |  |  |
| GUI    | 60 | RGB_DE   | RGB display interface,it is recommended to connect                                                                                                         |          |                                                                                                          |  |  |
| GUI    | 61 | RGB_HS   | magnetic beads in series to reduce EMI.                                                                                                                    | TCON_DAT | Data signal of TCON<br>initialization interface                                                          |  |  |
| GUI    | 62 | RGB_VS   | Taking the blue component signal                                                                                                                           | TCON_CLK | Clock signal of TCON<br>initialization interface                                                         |  |  |
| GUI    | 63 | RGB_B0   | as an example (red and green                                                                                                                               |          |                                                                                                          |  |  |
| GUI    | 64 | RGB_B1   | component signals can be<br>analogized),explain the data cable                                                                                             |          |                                                                                                          |  |  |
| GUI    | 65 | RGB_B2   | connection:<br>(1) For 18bit interface TFT screen                                                                                                          |          |                                                                                                          |  |  |
| GUI    | 66 | RGB_B3   | TFT_B5 RGB_B5<br>TFT_B4 RGB_B4                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 67 | RGB_B4   | TFT_B3 RGB_B3<br>TFT_B2 RGB_B2                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 68 | RGB_B5   | TFT_B1 RGB_B1<br>TFT_B0 RGB_B0                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 69 | RGB_G0   | (2) For 24bit interface TFT screen<br>TFT_B7 RGB_B5                                                                                                        |          |                                                                                                          |  |  |
| GUI    | 70 | RGB_G1   | TFT_B6 RGB_B4<br>TFT_B5 RGB_B3                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 71 | RGB_G2   | TFT_B4 RGB_B2                                                                                                                                              |          |                                                                                                          |  |  |
| GUI    | 72 | RGB_G3   | TFT_B3 RGB_B1<br>TFT_B2 RGB_B0                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 73 | RGB_G4   | TFT_B1 RGB_B5<br>TFT_B0 RGB_B5                                                                                                                             |          |                                                                                                          |  |  |
| GUI    | 74 | RGB_G5   |                                                                                                                                                            |          |                                                                                                          |  |  |
| GUI    | 75 | VDD      | 1.25V CPU core voltage                                                                                                                                     |          |                                                                                                          |  |  |
| GUI    | 76 | VIO      | 3.3V IO voltage                                                                                                                                            |          |                                                                                                          |  |  |
| GUI    | 77 | RGB_R0   |                                                                                                                                                            |          |                                                                                                          |  |  |
| GUI    | 78 | RGB_R1   |                                                                                                                                                            |          |                                                                                                          |  |  |
| GUI    | 79 | RGB_R2   | RGB display interface,it is<br>recommended to connect                                                                                                      |          |                                                                                                          |  |  |
| GUI    | 80 | RGB_R3   | magnetic beads in series to                                                                                                                                |          |                                                                                                          |  |  |
| GUI    | 81 | RGB_R4   | reduce EMI                                                                                                                                                 |          |                                                                                                          |  |  |
| GUI    | 82 | RGB_R5   |                                                                                                                                                            |          |                                                                                                          |  |  |
| System | -  | GND      | The grounding pad on the back<br>must ensure reliable welding and<br>good grounding                                                                        |          |                                                                                                          |  |  |



#### 2.2 Package Size



For PCB design, please use the component packaging and reference design provided by DWIN Technology.



## 2.3 Basic Performance Parameters

| Parameter                                  | Unit | Min. | Тур.     | Max.    | Description                                                                                                       |
|--------------------------------------------|------|------|----------|---------|-------------------------------------------------------------------------------------------------------------------|
| CPU core voltage                           | V    | 1.20 | 1.25     | 1.40    | The total filtering capacitance should<br>not be lower than 70uF,and the ripple<br>voltage should not exceed 50mV |
| CPU core current                           | mA   |      | 150      |         | High performance operating mode,dual core full speed operation                                                    |
|                                            | mA   |      | 50       |         | Low performance operating mode,dual core full speed operation                                                     |
| IO voltage (VIO)                           | V    | 1.8  | 3.3      | 3.6     | 5V TTL/CMOS level input,requires voltage divider or clamp protection                                              |
| AD input voltage                           | V    | -0.1 |          | VIO+0.3 |                                                                                                                   |
| AD input impedance                         | KΩ   |      | 1000     |         |                                                                                                                   |
| AD sampling frequency                      | KSPS |      | 16       |         | When a higher sampling frequency is required,multiple channels can be uniformly spaced in parallel                |
| IO high-level output amplitude (VOH)       | V    | 3.0  |          |         | VIO=3.3V,IO load current 8mA                                                                                      |
| IO low-level output amplitude<br>(VOL)     | V    |      |          | 0.3     | VIO=3.3V,IO load current 8mA                                                                                      |
| IO high-level output current               | mA   | -10  |          |         | VIO=3.3V,VOH=3V                                                                                                   |
| IO low-level output current                | mA   | 10   |          |         | VIO=3.3V,VOL=0.3V                                                                                                 |
| IO port flipping speed                     | MHz  |      | 100      | 150     |                                                                                                                   |
| IO high-level identification voltage (VIH) | V    | 1.6  |          |         |                                                                                                                   |
| IO low-level identification voltage (VIH)  | V    |      |          | 0.6     |                                                                                                                   |
| External crystal oscillator<br>frequency   | MHz  | 10.0 | 11.0592  | 12.0    | The corresponding PLL frequency<br>and CPU operating frequency can be<br>converted proportionally                 |
|                                            | MHz  |      | 74.6496  |         | Low power operating mode                                                                                          |
| CPU operating frequency                    | MHZ  |      | 298.5984 |         | High performance operating mode                                                                                   |
| PLL frequency                              | MHz  |      | 1194.394 |         | PWM,FSK,UART4,and UART5 all<br>operate with PLL clock frequency<br>division                                       |
| Operating temperature                      | °C   | -40  |          | +85     |                                                                                                                   |
| Storage temperature                        | °C   | -55  |          | +105    |                                                                                                                   |
| ESD protection capability                  | KV   |      | 2        |         | HBM mode                                                                                                          |



#### 2.4 Notices for Hardware Design

- (1) When powered on,the CPU core voltage (1.25V) cannot be powered on later than the CPU IO voltage (3.3V). The total filtering capacitance of the CPU core power supply should not be less than 70uF (a minimum of 3\* 22uF stacked capacitors with a voltage resistance of not less than 5V are required),and ensure that the CPU core voltage is not less than 1.2V before the CPU IO voltage (3.3V) fails (below 1.6V) during power off.
- (2) The CPU core voltage must be stable,otherwise it may cause the CPU abnormal operation (below the minimum value will cause a crash,and exceeding the maximum value may damage the IC). It is recommended to connect one LC filtering circuit in series (recommended value: L=10uH,C=66uF,three 22uF capacitors in parallel) when powered by the CPU core to improve anti-interference performance.
- (3) It is recommended to use low-level reset ICs such as SGM809S for reset processing, rather than simple RC reset circuits. Connecting a 10K resistor and a 470pF capacitor to the ground outside the reset pin can enhance its anti-interference ability.Each CPU core of T5F0 is equipped with a separate watchdog (WDT), which does not require an external WDT IC.
- (4) It is recommended to use a four layer board application design to achieve excellent electromagnetic compatibility characteristics. When using a double-sided board application design, please connect a 470pF capacitor in parallel with a 104 capacitor filtering circuit at the IC power supply pin to reduce noise radiation.
- (5) IO signal inputs exceeding VIO voltage of 0.3V or above must use voltage divider or clamp protection, otherwise it may cause signal abnormalities or damage to the IC.
- (6) When all IO ports are configured for input, they are all floating inputs without internal pull-up or pull-down; All IO ports are in the input state during the reset process. When used as outputs, they can be externally pulled down or up to ensure a certain level during the reset process.
- (7) The 4-bit bus speed of the external SPI Flash of T5F0 is 75MHz,and the wiring should be as close as possible. It is necessary to connect a 470pF capacitor in parallel with a 105 capacitor filtering circuit at the power pin of the SPI Flash.



# 3. Programming Instructions for OS CPU Function Module

The OS CPU of T5F0 adopts the 8051 core, which is widely used in industry, has the longest production time, and has been tested for a long time. On the basis of retaining the real-time performance, fast IO speed, and stable reliability of the 8051, DWIN has greatly improved the memory access and computing power of the 8051 by optimizing code processing, expanding the SFR bus, and adding hardware mathematical processors.

### **3.1 Initial Configuration**

After powering on the OS CPU core, the Special Function Register (SFR) in the table below must be properly initialized.

| SFR name  | Address | Initialize configuration value                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|---------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CKCON     | 0x8E    | 0x00                                                         | CPU running in 1T command rate mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T2CON     | 0xC8    | 0x70                                                         | Configure the extended interrupt system and set timer T2 to run in Autoload mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DPC       | 0x93    | 0x00or 0x01                                                  | The change mode of DPTR after MOVX command operation. If using C51 development, it must be configured as 0x00.<br>0x00: unchanged. 0x01: DPTR=DPTR+1. 0x03: DPTR=DPTR-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PAGESEL   | 0x94    | 0x01-0x03,<br>or configure according<br>to application needs | The OS CPU has 128KB of RAM for running code and accessing stored data through MOVX. The 128KB RAM is divided into four 32KB pages,corresponding to page addresses 0x00-0x03. Page 0 can only be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D_PAGESEL | 0x95    | 0x01-0x03,<br>or configure according<br>to application needs | used for code storage, and its corresponding DPTR addresses are 0x0000-<br>0x7FFF; Pages 1-3 can be switched between PAGESEL (code space) or<br>D0PAGESEL (data space), corresponding to addresses 0x8000-0xFFFF for<br>reading and writing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MUX_SEL   | 0xC9    | 0x40,or configure<br>according to<br>application needs       | <ul> <li>.7 1=CAN interface leads to P0.2 and P0.3; 0=CAN interface does not lead out,it is an IO port.</li> <li>.6 1=UART2 interface leads to P0.4 and P0.5; 0=UART2 interface does not lead out,it is an IO port.</li> <li>.5 Reserved,write 0.</li> <li>.4 1=FSK interface leads out to P3.6 and P3.7; 0=FSK interface does not lead out,it is an IO port.</li> <li>.3 Reserved,write 0.</li> <li>.2 Reserved,write 0.</li> <li>.1 WDT control,1=on; 0=off.</li> <li>.0 WDT service the dog,1=service the dog once (WDT count value reset to zero).</li> </ul>                                                                                                                                                                                                                                                                                    |
| MUX_SEL1  | 0×E9    | 0x40,or configure<br>according to<br>application needs       | <ul> <li>.7 The interrupt flag of the completed ADC conversion,and it will be reset to zero by the CPU after the conversion is completed (ANL MUX_SEL1,# 7FH).</li> <li>.6 Undefined.</li> <li>.5 1=UART5 interface leads out to P0.6 and P0.7; 0=UART5 interface does not lead out,it is an IO port.</li> <li>.4 1=UART4 interface leads out to P0.0 and P0.1; 0=UART4 interface does not lead out,it is an IO port.</li> <li>.3 1=PWM3 interface leads out to P3.5; 0=PWM3 interface does not lead out,it is an IO port.</li> <li>.2 1=PWM2 interface leads out to P3.4; 0=PWM2 interface does not lead out,it is an IO port.</li> <li>.1 1=PWM1 interface leads out to P3.3; 0=PWM1 interface does not lead out,it is an IO port.</li> <li>.0 1=PWM0 interface leads out to P3.2; 0=PWM0 interface does not lead out,it is an IO port.</li> </ul> |



| SFR name | Address | Initialize configuration value                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------|---------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| POMDOUT  | 0xB7    | Configure according to application needs               | P0 port output configuration (IO input reading is always valid, if it is configured as output, the IO status can still be read).<br>.7 0=P0.7 output off; 1=P0.7 output on (push-pull output).<br>.6 0=P0.6 output off; 1=P0.6 output on (push-pull output).<br>.5 0=P0.5 output off; 1=P0.5 output on (push-pull output).<br>.4 0=P0.4 output off; 1=P0.4 output on (push-pull output).<br>.3 0=P0.3 output off; 1=P0.3 output on (push-pull output).<br>.2 0=P0.2 output off; 1=P0.2 output on (push-pull output).<br>.1 0=P0.1 output off; 1=P0.1 output on (push-pull output).<br>.0 0=P0.0 output off; 1=P0.0 output on (push-pull output). |  |  |
| P1MDOUT  | 0xBC    | Configure according to<br>application needs            | P1 port output configuration (IO input reading is always valid, if it is configured as output, the IO status can still be read).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| P3MDOUT  | 0xBE    | Configure according to<br>application needs            | P2 port output configuration (IO input reading is always valid,if it is configured as output,the IO status can still be read).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PORTDRV  | 0xF9    | 0x01,or configure<br>according to application<br>needs | Driver capability configuration for IO port output mode,effective from a minimum of 3 bits: 0x00=4mA 0x01=8mA 0x02=16mA 0x03=32mA 0x04=48mA 0x05=64mA 0x06=80mA 0x07=100mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RAMMODE  | 0xF8    | 0x00                                                   | Variable memory access interface control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

# 3.2 Memory

The 8051 core of the OS CPU can access six different types of memory, as shown in the table below.

| Memory type              | Size      | Address             | Access method                                                                                         |
|--------------------------|-----------|---------------------|-------------------------------------------------------------------------------------------------------|
| Code memory              | 128KBytes | 0x0000-0xFFFF       | PAGESEL: Switch to code page space,and it can only be read with MOVC command.                         |
| Data register            | 256Bytes  | 0x00-0xFF           | Same as the standard 8051.                                                                            |
| SFR register             | 128Bytes  | 0x80-0xFF           | Same as the standard 8051,DWIN can provide users with SFR definition files( .INC or .H header files). |
| Extended SFR<br>Register | 384Bytes  | 0x000-0x17F         | Use the EXADR_H,EXADR_L,and EXDATA register interfaces to access                                      |
| Data storage             | 96KBytes  | 0x8000-0xFFFF       | D_PAGESEL: Switch to data page space,and use MOVX command to access.                                  |
| Variable memory          | 128KBytes | 0x00:0000-0x00:7FFF | Use variable memory interface to access                                                               |



# 3.2.1 Code Memory (64KBytes)

The functional divisions and definitions of code memory space are shown in the table below.

| Address | Definition                | Description                                                                                              |  |
|---------|---------------------------|----------------------------------------------------------------------------------------------------------|--|
| 0x0000  | Reset_PC                  | The entry address of the program after resetting                                                         |  |
| 0x0003  | EX0_ISR_PC                | External interrupt 0 program interface                                                                   |  |
| 0x000B  | T0_ISR_PC                 | Timer0 interrupt program interface                                                                       |  |
| 0x0013  | EX1_ISR_PC                | External interrupt 1 program interface                                                                   |  |
| 0x001B  | T1_ISR_PC                 | Timer1 interrupt program interface                                                                       |  |
| 0x0023  | UART2_ISR_PC              | UART2 TX/RX interrupt program interface                                                                  |  |
| 0x002B  | T2_ISR_PC                 | Timer2 interrupt program interface                                                                       |  |
| 0x0043  | FSK_ISR_PC                | Interrupt program interface for FSK data frame input and output                                          |  |
| 0x004B  | CAN_ISR_PC                | CAN interrupt program interface                                                                          |  |
| 0x0053  | UART4_TX_ISR_PC           | UART4 TX interrupt program interface                                                                     |  |
| 0x005B  | UART4_RX_ISR_PC           | UART4 RX interrupt program interface                                                                     |  |
| 0x0063  | UART5_TX_ISR_PC           | UART5 TX interrupt program interface                                                                     |  |
| 0x006B  | UART5_RX_ISR_PC           | UART5 RX interrupt program interface                                                                     |  |
| 0x008B  | PWM0_ISR_PC               | PWM0 interrupt program interface                                                                         |  |
| 0x0093  | PWM1_ISR_PC               | PWM1 interrupt program interface                                                                         |  |
| 0x009B  | PWM2_ISR_PC               | PWM2 interrupt program interface                                                                         |  |
| 0x00A3  | PWM3_ISR_PC               | PWM3 interrupt program interface                                                                         |  |
| 0x00AB  | AD_ISR_PC                 | AD data conversion interrupt program interface                                                           |  |
| 0x00F8  | JTAG interface<br>enabled | 0xFFFF enables connection to the JTAG interface for simulation debugging; Other values will be disabled. |  |
| 0x00FA  | "DWINT5"                  | Code recognition, illegal values will cause the OS CPU to stop running.                                  |  |
| 0x0100  | Application code start    |                                                                                                          |  |

- OS CPU codes are saved in 1Mbytes of on-chip Flash, and after power on reset, they are loaded into RAM by the system hardware for operation.
- OS CPU codes can only be written to on-chip Flash through the GUI CPU (SD card interface or variable memory interface).



#### 3.2.2 Variable Memory (128KBytes)

Variable memory is a dual port RAM used for high-speed data exchange between two CPU cores(OS core and GUI core),with the addresses range of 0x000000-0x007FFF,and each address corresponds to 4 bytes of data. The SFR register interface in the following table can be used to access variable memory:

| SFR name | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RAMMODE  | 0xF8    | <ul> <li>Variable memory access interface control,capable of bit addressing:</li> <li>.7 Write 1 to request occupation of variable memory for reading and writing,and it must be reset to zero when not occupying variable memory.</li> <li>.6 APP-EN Write 1 to start reading and writing once,and it will be reset to zero after hardware execution.</li> <li>.5 APP-RW 1=Read variable memory; 0=Write variable memory</li> <li>.4 APP-ACK Hardware response to request for 8051 to occupy variable memory: 1=OK; 0=BUSY,need to continue waiting.</li> <li>.30 corresponds to DATA3: DATA0. 1=Write the corresponding byte of DATA,0=Do not write the corresponding byte of DATA.</li> </ul> |  |
| ADR_H    | 0xF1    | The high 8-bit address of the variable memory,A23: A16,is always 0x00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ADR_M    | 0xF2    | The middle 8-bit address of the variable memory,A15: A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ADR_L    | 0xF3    | The low 8-bit address of the variable memory,A7: A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ADR_INC  | 0xF4    | The automatic increment of address after reading and writing variable memory,<br>Before reading/writing ADR_H:M:L=After reading/writing ADR_H:M:L+ADR_INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DATA3    | 0xFA    | Variable data interface, select corresponding RAMMODE.3 when writing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DATA2    | 0xFB    | Variable data interface, select corresponding RAMMODE.2 when writing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DATA1    | 0xFC    | Variable data interface, select corresponding RAMMODE.1 when writing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DATA0    | 0xFD    | Variable data interface, select corresponding RAMMODE.0 when writing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |



The variable memory must be read and written according to the following process (if the variable memory is applied to an interrupt, the interrupt must be closed when the main program reads and writes, and it cannot be nested):

- (1) Configure the address and address increment;
- (2) Set RAMCODE=0x8F (write) or 0xAF (read), check RAMCODE.4=1 to confirm obtaining read and write control;
- (3) Read and write data, set RAMMODE=0x00 after reading and writing.

#### Application example:

Read and write 2\*double words to address 0x0800 (corresponding to DGUS variable memory address 0x1000).

|       | MOV<br>MOV<br>MOV | ADR_H, #00H<br>ADR_M, #08H<br>ADR_L, #00H | ;Configure the variable memory address              |
|-------|-------------------|-------------------------------------------|-----------------------------------------------------|
|       | MOV               | ADR_INC, #01H                             | ;Configure the address increment                    |
|       | MOV<br>JNB        | RAMMODE,#OAFH<br>APP_ACK,\$               | ;Initiate reading mode<br>;Waiting for confirmation |
|       | MOV               | RO, #TEST_BUF                             | ;Reading                                            |
|       | MOV               | R1, #2                                    | , reading                                           |
| RDVP: | SETB              | APP_EN                                    | ; Initiate reading data once                        |
|       | JB                | APP_EN, \$                                | -                                                   |
|       | MOV               | @RO, DATA3                                |                                                     |
|       | INC               | RO                                        |                                                     |
|       | MOV               | @RO, DATA2                                |                                                     |
|       | INC               | RO<br>RO DATAL                            |                                                     |
|       | MOV<br>INC        | @RO, DATA1<br>RO                          |                                                     |
|       | MOV               | @RO, DATAO                                |                                                     |
|       | INC               | RO                                        |                                                     |
|       | DJNZ              | R1, RDVP                                  |                                                     |
|       | CLR               | APP_RW                                    | ;Writing mode                                       |
|       | MOV               | ADR_L, #OOH                               | ; Adjust the address to 0x08:0000                   |
|       | MOV               | RO, #TEST_BUF                             |                                                     |
|       | MOV               | R1, #2                                    |                                                     |
| WRVP: | MOV               | DATA3, @RO                                |                                                     |
|       | INC               | RO                                        |                                                     |
|       | MOV               | DATA2, @RO                                |                                                     |
|       | INC               | RO                                        |                                                     |
|       | MOV               | DATA1, @RO                                |                                                     |
|       | INC<br>MOV        | RO<br>DATAO, @RO                          |                                                     |
|       | SETB              |                                           | Initiate reading data once                          |
|       | JB                | APP_EN<br>APP_EN, \$                      | ; Initiate reading data once                        |
|       | JD<br>INC         | RO                                        |                                                     |
|       | DJNZ              | RU<br>R1, WRVP                            |                                                     |
|       | MOV               | RAMMODE, #00H                             | ; Variable memory reading and writing completed     |
|       |                   |                                           |                                                     |



#### 3.2.3 Data Storage (Up to 96KBytes)

The OS CPU of T5F0 has a maximum of three 32KBytes of RAM page blocks as the data storage,which are switched using the D\_PAGESEL register (0x01-0x03). After switching,the corresponding address is 0x8000-0xFFFF,and the relevant interface SFR are shown in the table below.

| SFR name  | Address | Description                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D_PAGESEL | 0x95    | Page block selection register,0x01-0x03. If only 32K bytes of data storage is used, it is recommended to configure it to 0x03.                                                                                                                                                                                                                                                          |
| DPC       | 0x93    | <ul> <li>After using the MOVX instruction of DPTR, the change modes of DPTR are as follows:</li> <li>DPC=0x00: DPTR remains unchanged after MOVX instruction operation. If using C51 development, it must be configured as 0x00.</li> <li>DPC=0x01: After the MOVX instruction operation, DPTR=DPTR+1.</li> <li>DPC=0x03: After the MOVX instruction operation, DPTR=DPTR-1.</li> </ul> |
| DPH       | 0x83    |                                                                                                                                                                                                                                                                                                                                                                                         |
| DPL       | 0x82    | DPTR data pointer.                                                                                                                                                                                                                                                                                                                                                                      |

# The address of 0x0000-0x7FFF prohibits the use of MOVX instructions for reading and writing, which may cause abnormal code execution.

The MOVX instruction of T5F0 has 3 instruction cycles, and DPC can configure DPTR automatic increment (or decrement) mode, which makes the speed of T5F0 reading and writing data storage much faster than the standard 8051, especially for reverse order storage applications.

#### Application example:

| MOV  | DPC, #01H    | ;DPTR++                          |
|------|--------------|----------------------------------|
| MOV  | DPTR, #8000H |                                  |
| MOVX | A, @DPTR     | ;A=@8000                         |
| MOVX | A, @DPTR     | ;A=@8001,After reading,DPTR=8002 |



#### 3.2.4 Extended SFR Register

Extended SFR register using EXADR\_H,EXADR\_L,and EXDATA register interfaces for reading and writing.

| SFR name | Address | De                                     | scription                                       |
|----------|---------|----------------------------------------|-------------------------------------------------|
| EXADR_H  | 0xF5    | High byte of extended SFR address      | After each reading and writing,the address will |
| EXADR_L  | 0xFE    | Low byte of extended SFR address       | automatically add 1 to point to the next SFR    |
| EXDATA   | 0xFF    | Data interface of extended SFR address |                                                 |

If you use the extended SFR register in an interrupt, the main program must close the interrupt when reading or writing the extended SFR register and cannot nest it.

#### The definitions of the extended SFR register are as follows:

| Category   | Address              | length                                                                                                                                                                                                                            | Definition       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0x000                | 1                                                                                                                                                                                                                                 | A7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 0x001-0x007          | 6                                                                                                                                                                                                                                 | A6-A0            | Register set for MDU and FMU operation acceleration.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 0x008                | 8                                                                                                                                                                                                                                 | B7:B0            | is the highest byte and 0 is the lowest byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 0x010                | 8                                                                                                                                                                                                                                 | C7:C0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MDU<br>FMU | 0x07F                | 1                                                                                                                                                                                                                                 | FMU_CN           | <ul> <li>Floating-point operation control register:</li> <li>7 1=Initiate a floating-point operation.After completing<br/>the operation,reset to zero by hardware.</li> <li>6 Rounding off control when converting floating-point to<br/>integer. 0=not rounding off; 1=rounding off.</li> <li>5 Floating-point type. 0=single precision; 1=double<br/>precision.</li> <li>4 Floating point calculation error feedback,<br/>0=normal; 1=error</li> <li>30 Floating-point operation modes:</li> <li>0=Single precision floating A (using A0-A3),output as<br/>integer B (8 bytes),controlled by.6 for rounding off;</li> <li>1=Integer A (8 bytes),output as single precision floating<br/>B (using A0-A3);</li> <li>2=Floating-point addition,C=A+B,all using A0-A3,B0-<br/>B3,C0-C3;</li> <li>3=Floating-point division,A=C/A;</li> <li>6=Floating point MAC,C=C+A * B;</li> <li>7-15 is not defined.</li> </ul> |
| ADC        | 0x018                | 16                                                                                                                                                                                                                                | AD0-AD7          | 8-channel AD value,2 bytes per channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 0x028                | 1                                                                                                                                                                                                                                 | QSPI_CLK_DIV     | QSPI bus clock configuration,QSPI clock<br>frequency=CPU operating frequency/QSPI_CLK_DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| QSPI       | 0x029 1 QSPI_CLK_PHS | <ul> <li>.7 Read phase configuration: 1=Read data after rising edge; 0=Read data after falling edge.</li> <li>.6 Write phase configuration: 1=high-level rewrite data; 0=low-level rewrite data.</li> <li>.50 Write 0.</li> </ul> |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 0x02A                | 3                                                                                                                                                                                                                                 | QSPI_DMA_LEN     | The length of read-write data bytes,with a maximum of 128K bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 0x02D                | 3                                                                                                                                                                                                                                 | QSPI_DMA_APP_ADR | Variable memory address pointer for reading and writing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| Category | Address | length | Definition               | Description                                                                                      |
|----------|---------|--------|--------------------------|--------------------------------------------------------------------------------------------------|
| WDT      | 0x030   | 4      | WDT_Time_Set             | WDT count setting,which based on the CPU clock. Reset T5F0 when WDT count exceeds the set value  |
|          | 0x034   | 1      | PWM0_CLK_DIV             | PWM0 operating frequency<br>=PLL frequency (1194.394MHz) / PWM0_CLK_DIV                          |
|          | 0x035   | 2      | PWM0_TH:L                | PWM0 count upper limit setting,PWM0 carrier<br>frequency=PWM0 operating frequency/(PWM0-TH: L+1) |
| PWM      | 0x037   | 2      | PWM0_H:L                 | High level width value of PWM0 output                                                            |
|          | 0x039   | 5      | PWM1 configuration value |                                                                                                  |
|          | 0x03E   | 5      | PWM2 configuration value |                                                                                                  |
|          | 0x043   | 5      | PWM3 configuration value |                                                                                                  |
|          | 0x048   | 1      | FSK_DIV                  | FSK transceiver operating frequency=PLL_CLK/FSK_DIV                                              |
|          | 0x049   | 1      | N_start                  | When sending FSK,the number of starting pulses B0, 0x01-0xFF                                     |
|          | 0x04A   | 1      | N_sync                   | Number of synchronization pulses B2,0x01-0x08                                                    |
|          | 0x04B   | 2      | ТВО                      | B0 pulse cycle number (corresponding to FSK transceiver operating frequency),>=6                 |
|          | 0x04D   | 2      | E0                       | B0 pulse decoding tolerance,which means that all pulses within the TB0+/- E0 cycle range are B0  |
| FSK      | 0x04F   | 2      | TB1                      | Number of B1 pulse cycles,>=6; TB1>TB0                                                           |
|          | 0x051   | 2      | E1                       | B1 pulse decoding tolerance,which means that all pulses within the TB1+/- E1 cycle range are B1  |
|          | 0x053   | 2      | TB2                      | Number of B2 pulse cycles,>=6; TB2>TB1                                                           |
|          | 0x055   | 2      | E2                       | B2 pulse decoding tolerance,which means that all pulses within the TB2+/- E2 cycle range are B2  |
|          | 0x080   | 128    | FSK_TX_BUFFER            | The first byte is the data length,and a maximum of 127 bytes of data can be sent per frame       |
|          | 0x100   | 128    | FSK_RX_BUFFER            | The first byte is the data length                                                                |
|          | 0x057   | 1      | BRP                      | CAN Baud rate divider register                                                                   |
|          | 0x058   | 1      | BTR0                     | Bit timing register 0,.74 is the synchronization jump width,and .30 is the time period 2 (0-7)   |
|          | 0x059   | 1      | BTR1                     | Bit timing register 1,.40 is time period 1 (0x00-0x0F)                                           |
|          | 0x05A   | 4      | ACR3:0                   | Acceptance code register                                                                         |
|          | 0x05E   | 4      | AMR3:0                   | Acceptance code register                                                                         |
|          | 0x062   | 1      | RXERR                    | Receive error count register                                                                     |
| CAN      | 0x063   | 1      | TXERR                    | Send error count register                                                                        |
|          | 0x064   | 1      | TX_BUFFER_SET            | .7=IDE .6=RTR .30=DLC (frame data length)                                                        |
|          | 0x065   | 4      | TX_ID                    | Extended frame ID.31: ID.3 29bit valid<br>Standard frame ID.31: ID.21 11bit valid                |
|          | 0x069   | 8      | TX_DATA                  | Sending data frame,D1-D8                                                                         |
|          | 0x064   | 1      | RX_BUFFER_SET            | .7=IDE .6=RTR .30=DLC (frame data length)                                                        |
|          | 0x065   | 4      | RX_ID                    | Extended frame ID.31: ID.3 29bit valid<br>Standard frame ID.31: ID.21 11bit valid                |
|          | 0x069   | 8      | RX_DATA                  | Sending data frame,D1-D8                                                                         |



### 3.3 Integer and Floating-point Operating Unit (MDU,FMU)

Due to the limited computing power of 8051,T5F0 has extended the hardware integer operation unit (MDU) and floating-point operation unit (FMU) to enhance computing power. The longest execution time for division instructions in mathematical operation units is 64T (usually 8T),and the rest of the instructions do not exceed 2T.The relevant control SFR is defined in the table below:

| SFR name | Address                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC_CN   | 0xE5                    | <ul> <li>MAC hardware integer multiply add accumulator control register, defined as follows:</li> <li>.7 MAC enable, write 1 to perform a calculation, and after hardware execution, it will be reset to zero.</li> <li>.6 MAC mode, 1 is multiply add accumulator mode: C=A * B+C,</li> <li>0 is multiplier mode: C=A * B.</li> <li>.5 Write 0.</li> <li>.4 1=64bit MAC,0=32bit MAC (A3:0/B3:0/C7:0, it's worth noting that C is still 64bit).</li> <li>.3 1=signed number,0=unsigned number.</li> <li>.20 Write 0.</li> <li>A,B,C are the register groups for extended SFR registers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |
| DIV_CN   | 0xE6                    | <ul> <li>DIV hardware integer divider control register (division C/A,quotient A,remainder B),defined as follows:</li> <li>.7 DIV enable,write 1 to perform a calculation,and after the hardware execution is completed,it will be reset to zero.</li> <li>.6 DIV mode,1: rounding 0: not rounding.</li> <li>.54 undefined,write 0.</li> <li>.3 1=signed number,0=unsigned number.</li> <li>.20 Write 0.</li> <li>A,B,C are the register groups for extended SFR registers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FMU_CN   | 0x07F<br>(Extended SFR) | <ul> <li>Hardware floating-point operation control register:</li> <li>7 1=Initiate a floating-point operation and after hardware execution, it will be reset to 0.</li> <li>6 When converting floating-point to integer, perform rounding off,<br/>0=not rounding off;1=rounding off.</li> <li>5 Floating-point type,0=single precision,1=double precision.</li> <li>4 Floating point calculation error feedback,0=normal,1=error</li> <li>30 Floating-point operation modes:</li> <li>0=Floating-point to integer conversion, input single precision A (using A0-A3),output<br/>integer B (8 bytes),.6 control rounding off;</li> <li>1=Integer convert to floating-point, input integer A (8 bytes), output single precision B<br/>(using A0-A3);</li> <li>2=Floating-point addition,C=A+B, all using A0-A3,B0-B3,C0-C3;</li> <li>3=Floating-point division,C/A,quotient A;</li> <li>6=Floating point MAC,C=C+A * B;</li> <li>7-15 Undefined.</li> </ul> |



#### Application example: 32-bit integer MAC calculation,0x1234\*0x5678-0x2000.

| Nou        | DUADD II HOON |                                                  |
|------------|---------------|--------------------------------------------------|
| MOV        | EXADR_H, #OOH |                                                  |
| MOV        | EXADR_L, #04H | ;Write A3:A0=0x 00 00 12 34                      |
| MOV        | EXDATA, #OOH  |                                                  |
| MOV        | EXDATA, #OOH  |                                                  |
| MOV        | EXDATA, #12H  |                                                  |
| MOV        | EXDATA, #34H  |                                                  |
| MOV        | EXADR_L, #OCH | ;Write B3:B0=0x 00 00 56 78                      |
| MOV        | EXDATA, #OOH  |                                                  |
| MOV        | EXDATA, #OOH  |                                                  |
| MOV        | EXDATA, #56H  |                                                  |
| MOV        | EXDATA, #78H  |                                                  |
| MOV        | EXADR_L,#10H  | ;Write C7:C0=0xFF FF FF FF FF FF E0 00 (-0x2000) |
| MOV        | EXDATA, #OFFH |                                                  |
| MOV        | EXDATA, #OEOH |                                                  |
| MOV        | EXDATA, #OOH  |                                                  |
| MOV        | MAC_CN, #OC8H | ;32bit integer MAC                               |
| WTMAC: MOV | A, MAC_CN     |                                                  |
| JB         | ACC. 7, WTMAC |                                                  |
| MOV        | EXADR_L,#10H  | ;Read result 00 00 00 00 06 25 E0 60             |
| MOV        | R7, EXDATA    |                                                  |
| MOV        | R6, EXDATA    |                                                  |
| MOV        | R5, EXDATA    |                                                  |
| MOV        | R4, EXDATA    |                                                  |
| MOV        | R3, EXDATA    |                                                  |
| MOV        | R2, EXDATA    |                                                  |
| MOV        | R1, EXDATA    |                                                  |
| MOV        | RO, EXDATA    |                                                  |
|            |               |                                                  |



#### 3.4 Timer

The OS CPU of T5F0 has three timers T0/T1/T2, where T0 and T1 are consistent with the standard 8051, and T2 can only operate in 16bit Autoload mode. The clocks of T0 and T1 are both 1/12 of the CPU frequency, while the clock of T2 can be configured as 1/12 or 1/24 of the CPU frequency.

The SFR related to timers is shown in the table below:

| SFR name | Address | Description                                                                                                                                                                                                                                              |  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TCON     | 0x88    | T0 and T1 control registers,same as standard 8051,can be bit addressed.<br>.7=TF1; .6=TR; .5=TF0; .4=TR0; .3=IE1; .2=IT1; .1=IE0; .0=IT0<br>IT1 and IT0 are external interrupt triggering mode options:<br>0=low-level triggering,1=low-edge triggering. |  |
| TMOD     | 0x89    | T0,T1 mode selection,same as standard 8051                                                                                                                                                                                                               |  |
| TH0      | 0x8C    |                                                                                                                                                                                                                                                          |  |
| TL0      | 0x8A    |                                                                                                                                                                                                                                                          |  |
| TH1      | 0x8D    |                                                                                                                                                                                                                                                          |  |
| TL1      | 0x8B    |                                                                                                                                                                                                                                                          |  |
| T2CON    | 0xC8    | T2 control register,can be bit addressed.<br>.7: Clock division selection,0=CPU main frequency/12,1=CPU main frequency/24.<br>.64: Must write 1.<br>.31: Must write 0.<br>.0: TR2,1=T2 running,0=T2 closing.                                             |  |
| TH2      | 0xCD    | T2 running value, automatically loaded when the add count overflows each                                                                                                                                                                                 |  |
| TL2      | 0xCC    | time. TH2=CRCH,TL2=CRCL.                                                                                                                                                                                                                                 |  |
| TRL2H    | 0xCB    |                                                                                                                                                                                                                                                          |  |
| TRL2L    | 0xCA    | T2 reinstallation load value=65536-T2 timer interval (uS) * T2 clock frequency (MHz).                                                                                                                                                                    |  |

#### The relevant settings for timer interrupts are as follows:

| Interrupt type | Program<br>entry address | Trigger marker | Interrupt enable control | Remark                                                                                                                       |
|----------------|--------------------------|----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| T0 interrupt   | 0x000B                   | TF0 (TCON.5)   | IEN0.1                   | Automatically clear TF0 during interrupt response                                                                            |
| T1 interrupt   | 0x001B                   | TF1 (TCON.7)   | IEN0.3                   | Automatically clear TF0 during interrupt response                                                                            |
| T2 interrupt   | 0x002B                   | TF2 (IRCON.6)  | IEN0.5                   | After the interrupt response,it is necessary to clear the TF2 using software,otherwise the interrupt will be triggered again |

Application example: CPU main frequency 74.6496MHz,set T2 1mS interrupt,output 500Hz square wave at P1.0.

|        | ORG<br>LJMP        | 002BH<br>T2INT | ; T2 interrupt program entry |
|--------|--------------------|----------------|------------------------------|
| T2INT: | CLR<br>CPL<br>RETI | TF2<br>P1.0    | ;T2 interrupt program        |

#### ;Initialize the relevant SFR for T2

| MOV | CRCH, #HIGH(59315) | ; 1mS timer                |
|-----|--------------------|----------------------------|
| MOV | CRCL, #LOW (59315) |                            |
| MOV | T2CON, #71H        | ; TR2=1                    |
| ORL | IENO, #20H         | ;ET2=1,enable T2 interrupt |



### 3.5 Watchdog Timer (WDT)

The relevant SFR for watchdog timer control is shown in the table below:

| SFR name | Address | Description                                                                                                  |
|----------|---------|--------------------------------------------------------------------------------------------------------------|
| MUX_SEL  | 0xC9    | .1 WDT control,1=on,0=off.<br>.0 WDT feeding the dog,1=feeding the dog once (WDT count value reset to zero). |

The WDT count overflow time is saved at the 0x030 extended SFR address, and the WDT reset time=set

value/CPU main frequency (Hz), which is measured in seconds.

The relevant reference codes for WDT operation are as follows:

| ANL<br>MOV | MUX_SEL,#0FDH<br>EXADR_H,#00H | ;WDT must be turned off before setting the overflow time<br>;WDT reset time with the main frequency configuration of 74.6496MHz :<br>1 second=74649600 (0x04 73 10 00) |
|------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOV        | EXADR_L,#30H                  |                                                                                                                                                                        |
| MOV        | EXDATA,#04H                   |                                                                                                                                                                        |
| MOV        | EXDATA,#73H                   |                                                                                                                                                                        |
| MOV        | EXDATA,#10H                   |                                                                                                                                                                        |
| MOV        | EXDATA,#00H                   |                                                                                                                                                                        |
| ORL        | MUX_SEL,#02H                  | ;Enable WDT; Once enabled,it is necessary to feed the dog before WDT overflow to avoid system reset.                                                                   |
| ORL        | MUX_SEL,#01H                  | ;WDT reset (feeding dog)                                                                                                                                               |



# 3.6 Pulse Width Modulation Module (PWM)

#### SFR registers related to PWM control:

| SFR name | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL1 | 0xE9    | <ul> <li>.3 1=PWM3 interface leads out to P3.5,<br/>0=PWM3 interface does not lead out,it is an IO port.</li> <li>.2 1=PWM2 interface leads out to P3.4,<br/>0=PWM2 interface does not lead out,it is an IO port.</li> <li>.1 1=PWM1 interface leads to P3.3,0=PWM1 interface does not lead out,it is an IO port.</li> <li>.0 1=PWM0 interface leads out to P3.2,<br/>0=PWM0 interface does not lead out,it is an IO port.</li> </ul> |
| PWM0_CN  | 0xEB    | <ul> <li>.7 W,PWM0_EN,1=PWM0 on,0=PWM0 off.</li> <li>.6 R/W,PWM0_IF,PWM0 interrupt flag,<br/>after the hardware is set,it will be reset to zero by the CPU.</li> <li>.5 R/W,PWM0 configuration (0x034-0x036 extended SFR) update once ,and reset it to<br/>zero after hardware is set.</li> <li>.40 Undefined</li> </ul>                                                                                                              |
| PWM1_CN  | 0xEC    | The definition is the same as PWM0_CN                                                                                                                                                                                                                                                                                                                                                                                                 |
| PWM2_CN  | 0xED    | The definition is the same as PWM0_CN                                                                                                                                                                                                                                                                                                                                                                                                 |
| PWM3_CN  | 0xEE    | The definition is the same as PWM0_CN                                                                                                                                                                                                                                                                                                                                                                                                 |
| P3MDOUT  | 0xBE    | P3 port output configuration (IO input reading is always valid.When it is configured as output,IO status can still be read).<br>.5 0=P3.5 output off,1=P3.5 output on (push-pull output).<br>.4 0=P3.4 output off,1=P3.4 output on (push-pull output).<br>.3 0=P3.3 output off,1=P3.3 output on (push-pull output).<br>.2 0=P3.2 output off,1=P3.2 output on (push-pull output).                                                      |

#### Extended SFR registers related to PWM control:

| Address | Size | Definition         | Description                                                                                       |
|---------|------|--------------------|---------------------------------------------------------------------------------------------------|
| 0x034   | 1    | PWM0_CLK_DIV       | PWM0 operating frequency=<br>PLL frequency (1194.394MHz)/PWM0_CLK_DIV                             |
| 0x035   | 2    | PWM0_TH:L          | PWM0 count upper limit setting,PWM0 carrier frequency=<br>PWM0 operating frequency/(PWM0_TH: L+1) |
| 0x037   | 2    | PWM0_H:L           | High level width value of PWM0 output                                                             |
| 0x039   | 5    | PWM1 configuration |                                                                                                   |
| 0x03E   | 5    | PWM2 configuration |                                                                                                   |
| 0x043   | 5    | PWM3 configuration |                                                                                                   |

#### Related settings for PWM interrupts:

| interrupt type | Program entry<br>address | Trigger marker | Interrupt enable control | Note                                                                       |
|----------------|--------------------------|----------------|--------------------------|----------------------------------------------------------------------------|
| PWM0 interrupt | 0x008B                   | PWM0_CN.6      | IEN2.1                   | After the interrupt response,software needs to be used to reset PWM0_CN. 6 |
| PWM1 interrupt | 0x0093                   | PWM1_CN.6      | IEN2.2                   | After the interrupt response,software needs to be used to reset PWM1_CN. 6 |
| PWM2 interrupt | 0x009B                   | PWM2_CN.6      | IEN2.3                   | After the interrupt response,software needs to be used to reset PWM2_CN. 6 |
| PWM3 interrupt | 0x00A3                   | PWM3_CN.6      | IEN2.4                   | After the interrupt response,software needs to be used to reset PWM3_CN. 6 |



# Application example: Configure PWM0 as the frequency of about 8bit 300KHz, and adjust the PWM output duty cycle during PWM interruption.

#### ; PWM0 initialization configuration

| MOV | EXADR_H, #OOH                                                                                                                    |                                                                           |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| MOV | EXADR_L,#34H                                                                                                                     |                                                                           |  |  |  |  |
| MOV | EXDATA, #15                                                                                                                      | ;PWM0 frequency=1194.394MHz/(15*256)=311KHz                               |  |  |  |  |
| MOV | EXDATA, #OOH                                                                                                                     | ;Count upper limit                                                        |  |  |  |  |
| MOV | EXDATA, #255                                                                                                                     |                                                                           |  |  |  |  |
| MOV | EXDATA, #OOH                                                                                                                     | The initialization configuration for outputting high levels is set to 0%; |  |  |  |  |
| MOV | EXDATA, #OOH                                                                                                                     |                                                                           |  |  |  |  |
| MOV | PWMO_CN, #OAOH                                                                                                                   | ;Configure PWM0 once and turn it on                                       |  |  |  |  |
| ORL | P3MDOUT,#04H                                                                                                                     | ;P3.2 output                                                              |  |  |  |  |
| ORL | MUX_SEL1, #01H                                                                                                                   | ;Configure P3.2 as PWM0 output                                            |  |  |  |  |
| ORL | IEN2, #02H                                                                                                                       | ;Enable PWM0 interrupt                                                    |  |  |  |  |
|     |                                                                                                                                  |                                                                           |  |  |  |  |
|     | DW/MO interment measures (if we all times adjustment of autout frequency is required use the vallour healteney ad and a heavy to |                                                                           |  |  |  |  |

; PWM0 Interrupt program (if real-time adjustment of output frequency is required, use the yellow background code above to adjust in the interrupt program)

| MOV | EXADR_H, #OOH     | ;New value for PWM high-level width configuration                                                                               |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| MOV | EXADR_L, #37H     | ;When the interrupt program uses the extended SFR,the interrupt must be turned off when the main program uses the extended SFR. |
| MOV | EXDATA, #OOH      |                                                                                                                                 |
| MOV | EXDATA, PWMO_DUTY |                                                                                                                                 |
| ANL | PWMO_CN, #OBFH    | ;Clear PWM0 interrupt flag                                                                                                      |



#### 3.7 IO Port

The OS CPU of T5F0 has three 8-bit parallel ports (P0,P1,P3),totaling 24 IO ports.

All inputs to the IO ports are always on, with floating inputs and no internal pull-up or pull-down.

When using the IO port as an output, it is necessary to turn on the output control, and the output drive capability can also be configured. Due to the power on reset process, the IO port is in input mode. When used as an output, it must be externally pulled up or down to ensure a reliable output during the power on process, and will not malfunction due to IO floating.

P3.0 is the external interrupt 0,P3.1 is the input of external interrupt 1,which can be configured as low-level trigger (0) or down edge trigger (1) through IT0 and IT1. The subsequent use of IO is consistent with the standard 8051,except for the need to control the switch for output,output strength,and external device reuse after power initialization configuration.

The SFR related to IO is shown in the table below.

| SFR name                                                                   | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0                                                                         | 0x80    | Can be bit addressed,same as standard 8051.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P1                                                                         | 0x90    | Can be bit addressed,same as standard 8051.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P3                                                                         | 0xB0    | Can be bit addressed,same as standard 8051.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P0MDOUT                                                                    | 0xB7    | P0 port output configuration.<br>.7 0=P0.7 output off 1=P0.7 output on (push-pull output).<br>.6 0=P0.6 output off 1=P0.6 output on (push-pull output).<br>.5 0=P0.5 output off 1=P0.5 output on (push-pull output).<br>.4 0=P0.4 output off 1=P0.4 output on (push-pull output).<br>.3 0=P0.3 output off 1=P0.3 output on (push-pull output).<br>.2 0=P0.2 output off 1=P0.2 output on (push-pull output).<br>.1 0=P0.1 output off 1=P0.1 output on (push-pull output).<br>.0 0=P0.0 output off 1=P0.0 output on (push-pull output).                                                                                                                                                                                                                                                                               |
| P1MDOUT                                                                    | 0xBC    | P1 port output configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P3MDOUT                                                                    | 0xBE    | P3 port output configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MUX_SEL 0xC9 .6 1=UA<br>.5 Rese<br>.4 1=FS<br>.3 Rese<br>.2 Rese<br>.1 WDT |         | <ul> <li>.7 1=CAN interface leads to P0.2 and P0.3,0=CAN interface does not lead out,it is an IO port.</li> <li>.6 1=UART2 interface leads to P0.4 and P0.5,0=UART2 interface does not lead out,it is an IO port.</li> <li>.5 Reserved,write 0.</li> <li>.4 1=FSK interface leads out to P3.6 and P3.7,0=FSK interface does not lead out,it is an IO port.</li> <li>.3 Reserved,write 0.</li> <li>.2 Reserved,write 0.</li> <li>.1 WDT control,1=on 0=off.</li> <li>.0 WDT feeding the dog,1=feeding the dog once (WDT count value reset to zero).</li> </ul>                                                                                                                                                                                                                                                       |
| MUX_SEL1                                                                   | 0xE9    | <ul> <li>.7 ADC conversion completed interrupt flag. After the hardware is set,this will be reset to zero by the CPU (ANL MUX_SEL1,# 7FH).</li> <li>.6 Undefined</li> <li>.5 1=UART5 interface leads to P0.6 and P0.7,0=UART5 interface does not lead, it is an IO port.</li> <li>.4 1=UART4 interface leads out to P0.0 and P0.1,0=UART4 interface does not lead out, it is an IO port.</li> <li>.3 1=PWM3 interface leads out to P3.5,0=PWM3 interface does not lead out, it is an IO port.</li> <li>.2 1=PWM2 interface leads out to P3.4,0=PWM2 interface does not lead out, it is an IO port.</li> <li>.1 1=PWM1 interface leads to P3.3,0=PWM1 interface does not lead out, it is an IO port.</li> <li>.0 1=PWM0 interface leads out to P3.2,0=PWM0 interface does not lead out, it is an IO port.</li> </ul> |
| PORTDRV                                                                    | 0xF9    | The driver capability configuration for IO port output mode,only valid for a minimum of 3 bits:<br>0x00=4mA 0x01=8mA 0x02=16mA 0x03=32mA 0x04=48mA 0x05=64mA 0x06=80mA 0x07=100mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



The relevant settings for external interrupts on the IO port are as follows:

| Interrupt type | Program entry<br>address | Trigger marker | Interrupt enable control | Note                                                                                                                                                                   |
|----------------|--------------------------|----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EX0 interrupt  | 0x0003                   | IE0 (TCON.1)   | IEN0.0                   | Automatically clear IE0 when interrupt<br>response,input corresponding P3.0 IO.<br>IT0 (TCON. 0)=0,low-level trigger interrupt;<br>IT0=1,lower edge trigger interrupt  |
| EX1 interrupt  | 0x0013                   | IE1 (TCON.3)   | IEN0.2                   | Automatically clear IE1 when interrupt<br>response,input corresponding P3.1 IO.<br>IT1 (TCON. 2)=0,low level trigger interrupt;<br>IT1=1,lower edge trigger interrupt. |

#### 3.8 AD Data Reading

The AD of T5F0 is controlled by the GUI core, with a fixed sampling rate of 16KSPS, and the OS CPU can read in one direction. When using a resistive touch screen, users can use 3-channel ADs (AD5-AD7); If not use resistive touch screen, an additional 3 AD channels (AD1-AD3) can be provided to the user.

AD data is updated in the extended SFR, and its definition is shown in the table below:

| Address | Size | Definition | Description                                                                                       |
|---------|------|------------|---------------------------------------------------------------------------------------------------|
| 0x018   | 16   | AD0-AD7    | 8-channel AD value,2 bytes per channel,high byte first,12 bit resolution,VIO as reference voltage |

The relevant settings for external interrupts on the IO port are as follows:

| Interrupt type | Program entry<br>address | Trigger mark | Interrupt enable<br>control | Note                                                                                                         |
|----------------|--------------------------|--------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|
| AD interrupt   | 0x00AB                   | MUX_SEL1.7   | IEN2.5                      | After interrupt processing,it is necessary to use software to clear the corresponding interrupt trigger flag |



# 3.9 UART Communication Interface 3.9.1 UART2 Interface

The SFR control interfaces related to UART2 are shown in the table below.

| SFR name | Address | Description                                                                                                                                                                                                                       |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL  | 0xC9    | .6 1=UART2 interface leads out to P0.4 and P0.5,0=UART02 interface does not lead out,it is an IO port                                                                                                                             |
| SCON0    | 0x98    | UART2 control interface,same as standard 8051,can be bit addressed.<br>.7=SM0 .6=SM1 .5=SM2(multi machine communication bit)<br>.4=REN0 .3=TB80 .2=RB80 .1=TI0 .0=RI0                                                             |
| SBUF0    | 0x99    | UART2 receive/ transmit data interface                                                                                                                                                                                            |
| ADCON    | 0xD8    | Baud rate generator selection,0x00=T1 timer (standard 8051),0x80=use SREL0H: L                                                                                                                                                    |
| PCON     | 0x87    | .7=SMOD baud rate frequency doubling selection,0=no doubling,1=doubling                                                                                                                                                           |
| SREL0H   | 0xBA    | When ADCON=0x80, using SREL0H: L to set the baud rate without occupying T1.                                                                                                                                                       |
| SREL0L   | 0xAA    | SMOD=0 SRE0H: L=1024 CPU main frequency/(64 * baud rate);<br>SMOD=1 SRE0H: L=1024 CPU main frequency/(32 * baud rate).<br>The main frequency of the CPU is 74.6496MHz (low-power mode) or 298.5984MHz (high-<br>performance mode) |

#### The relevant settings for UART2 interrupts are as follows:

| Interrupt type     | Program entry<br>address | Trigger mark                   | Interrupt enable control | Note                                                                                                         |
|--------------------|--------------------------|--------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| UART2<br>interrupt | 0x0023                   | RI0 (SCON0.0)<br>TI0 (SCON0.1) | IEN0.4                   | After interrupt processing,it is necessary to use software to clear the corresponding interrupt trigger flag |



#### 3.9.2 UART4 Interface

The SFR control interfaces related to UART4 are shown in the table below.

| SFR name    | Address | Description                                                                                                                                                                                                                                                                                     |
|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL1    | 0xE9    | .4 1=UART4 interface leads out to P0.0 and P0.1,<br>0=UART4 interface does not lead out,it is an IO port.                                                                                                                                                                                       |
| SCON2T      | 0x96    | <ul> <li>.7 UART4 transmission enable,0=closed,1=open.</li> <li>.6 UART4 operating mode,0=8-bit mode,1=9-bit mode.</li> <li>.5 TB8,the 9th bit sent in 9bit mode.</li> <li>.41 Write 0.</li> <li>.0 TI,send flag,set when starting to send stop bit,interrupt will trigger the flag.</li> </ul> |
| SCON2R      | 0x97    | <ul> <li>.7 UART4 receive enable,0=closed,1=open.</li> <li>.6 Write 0.</li> <li>.5 RB8,the 9th bit received in 9bit.</li> <li>.41 Write 0.</li> <li>.0 RI,receive flag,receive valid stop bit,it will be set when the stop bit ends; Interrupt will trigger the flag.</li> </ul>                |
| SBUF2_TX    | 0x9E    | UART4 transmission data interface                                                                                                                                                                                                                                                               |
| SBUF2_RX    | 0x9F    | UART4 receive data interface                                                                                                                                                                                                                                                                    |
| BODE2_DIV_H | 0xD9    | UART4 baud rate setting:                                                                                                                                                                                                                                                                        |
| BODE2_DIV_L | 0xE7    | BODE2_DIV_H: L=37324800/baud rate (bps). The corresponding setting value for 115200bps is 324 (0x0144)                                                                                                                                                                                          |

#### The relevant settings for UART4 interrupts are as follows:

| Interrupt type                          | Program entry<br>address | Trigger mark | Interrupt enable control | Note                                                                                                          |
|-----------------------------------------|--------------------------|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------|
| UART4<br>transmission<br>data interrupt | 0x0053                   | SCON2T.0     | IEN1.2                   | After interrupt processing, it is necessary to use software to clear the corresponding interrupt trigger flag |
| UART4 receive<br>data interrupt         | 0x005B                   | SCON2R.0     | IEN1.3                   | After interrupt processing, it is necessary to use software to clear the corresponding interrupt trigger flag |



#### 3.9.3 UART5 Interface

The SFR control interfaces related to UART5 are shown in the table below.

| SFR name    | Address | Description                                                                                                                                                                                                                                                                                    |
|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL1    | 0xE9    | . 5 1=UART5 interface leads out to P0.6 and P0.7,0=UART5 interface does not lead out,it is an IO port                                                                                                                                                                                          |
| SCON3T      | 0xA7    | <ul> <li>.7 UART5 transmission enable,0=closed,1=open.</li> <li>.6 UART5 operating mode,0=8-bit mode,1=9-bit mode.</li> <li>.5 TB8,the 9th bit sent in 9bit mode.</li> <li>.41 Write 0.</li> <li>.0 TI,send flag,set when starting to send stop bit,interrupt will trigger the flag</li> </ul> |
| SCON3R      | 0xAB    | <ul> <li>.7 UART5 receive enable,0=closed,1=open.</li> <li>.6 Write 0.</li> <li>.5 RB8,the 9th bit received in 9bit.</li> <li>.41 Write 0.</li> <li>.0 RI,receive flag,receive valid stop bit,it will be set when the stop bit ends; Interrupt will trigger the flag.</li> </ul>               |
| SBUF3_TX    | 0xAC    | UART5 transmission data interface                                                                                                                                                                                                                                                              |
| SBUF3_RX    | 0xAD    | UART5 receive data interface                                                                                                                                                                                                                                                                   |
| BODE3_DIV_H | 0xAE    | UART5 baud rate setting:<br>BODE3-DIV_H: L=37324800/baud rate (bps). The corresponding setting value for 115200bps                                                                                                                                                                             |
| BODE3_DIV_L | 0xAF    | is 324 (0x0144).                                                                                                                                                                                                                                                                               |

#### The relevant settings for UART5 interrupts are as follows:

| Ir | nterrupt type                           | Program entry<br>address | Trigger mark | Interrupt enable control | Note                                                                                                          |
|----|-----------------------------------------|--------------------------|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------|
|    | UART5<br>transmission<br>data interrupt | 0x0063                   | SCON3T.0     | IEN1.4                   | After interrupt processing, it is necessary to use software to clear the corresponding interrupt trigger flag |
| -  | ART5 receive<br>lata interrupt          | 0x006B                   | SCON3R.0     | IEN1.5                   | After interrupt processing,it is necessary to use software to clear the corresponding interrupt trigger flag  |



# 3.10 CAN Communication Interface

The SFR related to CAN interface control are shown in the table below:

| SFR name                                                                                                                                                                                                                                                           | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL                                                                                                                                                                                                                                                            | 0xC9    | .7 1=CAN interface leads out to P0.2 and P0.3,<br>0=CAN interface does not lead out,it is an IO port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CAN_CR                                                                                                                                                                                                                                                             | 0x8F    | <ul> <li>.7 1=CAN interface on 0=CAN interface off. Initially in a closed state</li> <li>.6 1=software reset 0=normal operation,initially in reset state</li> <li>.5 1=configure CAN interface configuration data once (0xFF: 0060-0xFF: 0062),and after hardware processing,it will be reset to zero.</li> <li>.4 Set speed mode,1=1 sampling; 0=3 sampling</li> <li>.3 Set filter mode,1=double; 0=single</li> <li>.2 1=Start sending once,it will be reset to zero after hardware processing (successful send,arbitration failure,EI (CAN_IR.3) error,software reset).</li> <li>.10 Undefined.</li> </ul>                                                                                                                                                                                                                         |
| CAN_IR                                                                                                                                                                                                                                                             | 0x91    | <ul> <li>.7 RF-IF remote frame reception interrupt flag. After the hardware is set, it will be reset to zero by the CPU.</li> <li>.6 CAN_RX_IF CAN. Receive completion interrupt flag. After the hardware is set, it will be reset to zero by the CPU. During the setup period, the hardware cannot update data anymore.</li> <li>.5 CAN_TX_IF CAN. After sending a successful interrupt flag, it will be reset by the CPU after the hardware is set.</li> <li>.4 OI receive overflow flag. After the hardware is set, it will be reset to zero by the CPU.</li> <li>.3 EI error flag. After the hardware is set, it will be reset to zero by the CPU. When an error occurs in CAN_ET [4:0], this bit will be pulled up.</li> <li>.2 Sending arbitration. 1=Sending arbitration failed; 0=Sending arbitration successful.</li> </ul> |
| CAN_ET 0xE8 Wrong type register. After the hardw<br>.7 Node Hanging mark<br>.6 Proactive error mark<br>.5 Passive error mark<br>.4 CRC verification error mark<br>.3 Response error mark<br>.2 Format error mark<br>.1 Bit padding error mark<br>.0 Bit error mark |         | .6 Proactive error mark<br>.5 Passive error mark<br>.4 CRC verification error mark<br>.3 Response error mark<br>.2 Format error mark<br>.1 Bit padding error mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



CAN communication interface is defined in the extended SFR, using EXADR\_H, EXADR\_L, and EXDATA for reading and writing, as shown in the table below:

| Address | Size | Definition    | Description                                                                                     |
|---------|------|---------------|-------------------------------------------------------------------------------------------------|
| 0x057   | 1    | BRP           | CAN baud rate divider register                                                                  |
| 0x058   | 1    | BTR0          | Bit timing register 0,.74 is the synchronization jump width, and .30 is the time period 2 (0-7) |
| 0x059   | 1    | BTR1          | Bit timing register 1,.40 is time period 1 (0x00-0x0F)                                          |
| 0x05A   | 4    | ACR3:0        | Acceptance code register                                                                        |
| 0x05E   | 4    | AMR3:0        | Acceptance code register                                                                        |
| 0x062   | 1    | RXERR         | Receiving error count register                                                                  |
| 0x063   | 1    | TXERR         | Transmitting error count register                                                               |
| 0x064   | 1    | TX_BUFFER_SET | .7=IDE .6=RTR .30=DLC (frame data length)                                                       |
| 0x065   | 4    | TX_ID         | Extended frame ID.31: ID.3,29bit valid<br>Standard frame ID.31: ID.21,11bit valid               |
| 0x069   | 8    | TX_DATA       | Transmitting data frame,D1-D8                                                                   |
| 0x064   | 1    | RX_BUFFER_SET | .7=IDE .6=RTR .30=DLC (frame data length)                                                       |
| 0x065   | 4    | RX_ID         | Extended frame ID.31: ID.3,29bit valid<br>Standard frame ID.31: ID.21,11bit valid               |
| 0x069   | 8    | RX_DATA       | Receiving data frame,D1-D8                                                                      |

The relevant settings for CAN interface interrupt is as follows:

| Interrupt type             | Program entry<br>address | Trigger mark | Interrupt enable control | Note                                                                                                         |
|----------------------------|--------------------------|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| CAN interface<br>interrupt | 0x004B                   | CAN_IR       | IEN1.1                   | After interrupt processing,it is necessary to use software to clear the corresponding interrupt trigger flag |



#### 3.11 FSK Transceiver

FSK transceiver is a low-cost,long-distance,high data rate,and high reliability communication method that uses frequency encoding,transmits data frame by frame,and performs FEC (Forward Error Correction) in communication. The physical layer of FSK transceiver can use RS485,RF,plastic fiber,etc.,and is also suitable for power line carrier transmission.

#### The SFR related to FSK transceiver control are shown in the table below:

| SFR name | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MUX_SEL  | 0xC9    | .4 1=FSK interface leads out to P3.6 and P3.7,<br>0=FSK interface does not lead out,it is an IO port.<br>When configuring the FSK interface as a lead out,the OS/GUI (PIN # 21) will automatically convert<br>to the FSK interface's transceiver control signal after resetting: 1=TX,0=RX                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FSK_CN   | 0xEA    | <ul> <li>.7 FSK control. 1=on,0=off</li> <li>.6 1=Execute an update of FSK control register data (extended SFR 0x048-0x056),and it will be cleared to zero after hardware processing.</li> <li>.5 1=Initiate FSK transmission once,and after the transmission is completed,it will be cleared to zero.</li> <li>.4 1=FSK receiver is in reset state,0=FSK receiver working normally</li> <li>.3 FSK_RX_IF FSK receive completion interrupt flag. It will be cleared to zero by the CPU after hardware processing. During the setup period,the hardware no longer receives and updates data.</li> <li>.2 FSK_TX_IF FSK send completion interrupt flag,It will be cleared to zero by the CPU after hardware processing.</li> <li>.10 Undefined</li> </ul> |

The communication interface of FSK transceiver is defined in the extended SFR, using EXADR\_H, EXADR\_L, and EXDATA for reading and writing, as shown in the table below:

| Address | Size | Definition    | Description                                                                                                                                                       |
|---------|------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x048   | 1    | FSK_DIV       | FSK transceiver operating frequency=1194.394MHz/FSK_DIV                                                                                                           |
| 0x049   | 1    | N_start       | When transmitting,the number of starting pulses B0,0x01-<br>0xFF; Generally taken from 16 to 32                                                                   |
| 0x04A   | 1    | N_sync        | The number of synchronous pulses B2,0x01-0x08,Generally taken from 0x04-0x06                                                                                      |
| 0x04B   | 2    | тво           | B0 pulse cycle number<br>(corresponding to FSK transceiver operating frequency),>=6;<br>Frequency when FSK interface sends bit 0<br>=(1194.394/(FSK_DIV*TB0)) MHz |
| 0x04D   | 2    | E0            | B0 pulse decoding tolerance,which means that pulses with a period in the TB0+/- E0 range are all B0                                                               |
| 0x04F   | 2    | TB1           | B1 pulse cycle number,>=6; TB1>TB0. Frequency when FSK interface sends bit 1=(1194.394/(FSK_DIV*TB1)) MHz                                                         |
| 0x051   | 2    | E1            | B1 pulse decoding tolerance, which means that pulses with a period within the TB1+/- E1 range are all B1. Generally the same as E0                                |
| 0x053   | 2    | TB2           | B2 pulse cycle number,>=6; TB2>TB1.Frequency when FSK interface sends synchronous bits=(1194.394/(FSK_DIV*TB2)) MHz                                               |
| 0x055   | 2    | E2            | B2 pulse decoding tolerance,which means that pulses with a period in the TB2+/- E2 range are all B2                                                               |
| 0x080   | 128  | FSK_TX_BUFFER | The first byte is the data length,and a maximum of 127 bytes of data can be sent per frame                                                                        |
| 0x100   | 128  | FSK_RX_BUFFER | The first byte is the data length                                                                                                                                 |



#### The relevant settings for FSK transceiver interruption are as follows:

| Interrupt type                  | Program entry<br>address | Trigger mark           | Interrupt enable<br>control | Note                                                                                                         |
|---------------------------------|--------------------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|
| FSK<br>transceiver<br>interrupt | 0x0043                   | FSK_RX_IF<br>FSK_TX_IF | IEN1.0                      | After interrupt processing,it is necessary to use software to clear the corresponding interrupt trigger flag |

# Application example: Configure the FSK transceiver communication rate to be around 1Mbytes/S and send one frame of data "AB".

| MOV         | EXADR_H, #OOH       | ;Configure FSK transceiver                      |
|-------------|---------------------|-------------------------------------------------|
| MOV         | EXADR_L, #48H       |                                                 |
| MOV         | EXDATA, #01H        | ;FSK clock equals to PLL clock,1194.394MHz      |
| MOV         | EXDATA, #24         | ;Number of startup pulses in front              |
| MOV         | EXDATA, #6          | ;Number of synchronous pulses                   |
| MOV         | EXDATA, #HIGH(90)   | ;TB0 F0=13.271MHz                               |
| MOV         | EXDATA, #LOW (90)   |                                                 |
| MOV         | EXDATA, #9          | ;E0                                             |
| MOV         | EXDATA, #HIGH(108)  | ;TB1 F1=11.059MHz                               |
| MOV         | EXDATA, #LOW(108)   |                                                 |
| MOV         | EXDATA, #9          |                                                 |
| MOV         | EXDATA, #HIGH (140) | ;TB2 F2=8.531MHz                                |
| MOV         | EXDATA, #LOW(140)   |                                                 |
| MOV         | EXDATA, #16         |                                                 |
| ORL         | MUX_SEL, #10H       | ;FSK transceiver leads out to IO                |
| MOV         | FSK_CN, #OCOH       | ;Open the FSK transceiver and configure it once |
| MOV         | EXADR_H, #00H       | ;Send data "AB"                                 |
| MOV         | EXADR_L, #80H       |                                                 |
| MOV         | EXDATA, #02H        | ;Send the byte length of data                   |
| MOV         | EXDATA, #41H        | ;Data "A"                                       |
| MOV         | EXDATA, #42H        | ;Data "B"                                       |
| MOV         | FSK_CN, #OAOH       | ;Start sending                                  |
| WAITFTX:MOV | A, FSK_CN           |                                                 |
| JB          | ACC. 5, WAITFTX     | ; Waiting for sending to end                    |
|             |                     |                                                 |



#### 3.12 QSPI Bus DMA Operation

The QSPI (SPI interface with 4 data lines) interface on the T5F0 OS CPU is an IO port simulation, and the instructions for QSPI bus operations are processed by user software. T5F0 provides DMA hardware acceleration between the QSPI bus and variable memory during the data read and write phase. The SFR related to QSPI bus DMA control are shown in the table below:

| SFR name | Address | Description                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SYSREG   | 0xF6    | <ul> <li>.7 1=Initiate the QSPI interface DMA reading once (QSPI bus reads to variable memory),and after hardware execution,it will be reset to zero.</li> <li>.6 1=Initiate the QSPI interface DMA writing once (variable memory written to the QSPI bus),and after the hardware execution is completed,it will be reset to zero.</li> </ul> |  |  |  |

# The timing of QSPI Bus DMA defined in extended SFR, using EXADR\_H, EXADR\_L, and EXDATA for reading and writing, as shown in the table below:

| Address | Size           | Definition       | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x028   | 1 QSPI_CLK_DIV |                  | QSPI bus clock frequency configuration,QSPI clock frequency=CPU<br>operating frequency/QSPI_CLK_DIV.<br>For general QSPI interface Flash or PSRAM,When the operating<br>frequency of the CPU is 74.6496MHz (low power mode),it is<br>recommended to configure ASPI_CLK_DIV as 0x02;<br>When the operating frequency of the CPU is 298.5984MHz<br>(high-performance mode),it is recommended to configure<br>ASPI_CLK_DIV as 0x04. |
| 0x029   | 1              | QSPI_CLK_PHS     | <ul> <li>.7 Read phase configuration: 1=Read data after rising edge,<br/>0=Read data after falling edge. Usually write 1.</li> <li>.6 Write phase configuration: 1=high-level rewrite data,<br/>0=low-level rewrite data. Usually write 0.</li> <li>.50: Write 0.</li> </ul>                                                                                                                                                     |
| 0x02A   | 3              | QSPI_DMA_LEN     | DMA read and write data byte length,0x000001-0x020000,maximum 128K bytes.                                                                                                                                                                                                                                                                                                                                                        |
| 0x02D   | 3              | QSPI_DMA_APP_ADR | The variable memory address pointer for reading and writing data.<br>When data is read from the QSPI bus to the variable memory, it is<br>written in the order of DATA0-DATA3.<br>When data is written from the variable memory to the QSPI bus, it is<br>read in the order of DATA0-DATA3.                                                                                                                                      |



# 3.13 Interrupt System

## 3.13.1 Interrupt Control SFR

The T5F0 OS CPU has a total of 17 interrupts, and the list of related control SFRs are as follows:

| SFR name | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IENO     | 0xA8    | <ul> <li>Interrupt enables controller 0, which can be bit addressed.</li> <li>.7 EA interrupt total control bit; 0=all interrupts closed,1=whether interrupts are opened is controlled by the control bit of each interrupt.</li> <li>.6 Must be written as 0.</li> <li>.5 ET2,T2 timer interrupt enable control bit.</li> <li>.4 ES0,UART2 interrupt enable control bit.</li> <li>.3 ET1,T1 timer interrupt enable control bit.</li> <li>.2 EX1,external interrupt 1 (P3.1 pin) interrupt enable control bit.</li> <li>.1 ET0,T0 timer interrupt enable control bit.</li> <li>.0 EX0,external interrupt 0 (P3.0 pin) interrupt enable control bit.</li> </ul> |
| IEN1     | 0xB8    | Interrupt enable controller 1,which can be bit addressed.<br>.76 Must be written as 0.<br>.5 ES3R,UART5 receive interrupt enable control bit.<br>.4 ES3T,UART5 transmit interrupt enable control bit.<br>.3 ES2R,UART4 receive interrupt enable control bit.<br>.2 ES2T,UART4 transmit interrupt enable control bit.<br>.1 ECAN,CAN communication interrupt enable control bit.<br>.0 EFSK,FSK transceiver interrupt enable control bit.                                                                                                                                                                                                                       |
| IEN2     | 0x9A    | Interrupt enable controller 2.<br>.76 Must be written as 0.<br>.5 EADC,ADC data conversion end interrupt enable control bit.<br>.4 EPWM3,PWM3 interrupt enable control bit.<br>.3 EPWM2,PWM2 interrupt enable control bit.<br>.2 EPWM1,PWM1 interrupt enable control bit.<br>.1 EPWM0,PWM0 interrupt enable control bit.<br>.0 Must be written as 0.                                                                                                                                                                                                                                                                                                           |
| IEN3     | 0xD1    | Interrupt enable controller 3,must be written as 0x00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IP0      | 0xA9    | Interrupt priority controller 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IP1      | 0xB9    | Interrupt priority controller 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### 3.13.2 Interrupt Priority

The interrupt priority of T5F0 OS CPU is processed according to the following rules:

(1) 17 interrupts are divided into 6 groups, with 2-3 interrupts in each group, and the priority within each group is fixed. For example, external interrupt 1 in the same group has a higher priority than PWM1 interrupt, and PWM1 interrupt has a higher priority than UART4 transmit interrupt, as shown in the table below.

|       | IP0                     | IP1 | Interrupt counterpart |                                      |                                |  |  |  |
|-------|-------------------------|-----|-----------------------|--------------------------------------|--------------------------------|--|--|--|
| Group | counterpart counterpart |     | High priority         | Medium priority                      | Low priority                   |  |  |  |
| G0    | .0                      | .0  | External interrupt 0  | FSK transceiver interrupt            |                                |  |  |  |
| G1    | .1                      | .1  | T0 timer interrupt    | PWM0 interrupt                       | CAN communication<br>interrupt |  |  |  |
| G2    | .2                      | .2  | External interrupt 1  | PWM1 interrupt                       | UART4 transmit interrupt       |  |  |  |
| G3    | .3                      | .3  | T1 timer interrupt    | PWM2 interrupt                       | UART4 receive interrupt        |  |  |  |
| G4    | .4                      | .4  | UART2 interrupt       | PWM3 interrupt                       | UART5 transmit interrupt       |  |  |  |
| G5    | .5                      | .5  | T2 timer interrupt    | ADC data conversion end<br>interrupt | UART5 receive interrupt        |  |  |  |

(2) There are 4 levels of priority between 6 groups, which can be configured by the corresponding bits of IP0 and IP1. See the table below.

| Priority between groups | IP1 corresponding bit | IP0 corresponding bit |
|-------------------------|-----------------------|-----------------------|
| 3(highest)              | 1                     | 1                     |
| 2                       | 1                     | 0                     |
| 1                       | 0                     | 1                     |
| 0(lowest)               | 0                     | 0                     |

For example, to set the priority of T2 timer interrupt, ADC data conversion end interrupt, and UART5 receive interrupt in G5 group to the highest, it can be set: IP1=0x20 (IP1.5=1), IP0=0x20 (IP0.5=1).

(3) If the configured priorities are all the same (IP1=0x00 IP1=0x00),then the priority of the G0 group is the highest, and the priority of the G5 group is the lowest. The table of interrupt priority weights for the same configuration are as follows:

| ١  | Neight   | 16      | 15  | 14 | 13   | 12  | 11  | 10   | 9   | 8  | 7    | 6   | 5     | 4    | 3   | 2  | 1   | 0      |
|----|----------|---------|-----|----|------|-----|-----|------|-----|----|------|-----|-------|------|-----|----|-----|--------|
| F  | Priority | highest |     |    |      |     |     |      |     |    |      |     |       |      |     |    |     | lowest |
| Ir | nterrupt | EX0     | FSK | Т0 | PWM0 | CAN | EX1 | PWM1 | TX4 | T1 | PWM2 | RX4 | UART2 | PWM3 | TX5 | T2 | ADC | RX5    |

(4) High priority interrupts can be nested within low priority interrupts (smaller weight interrupt can be interrupted by larger weight interrupt), with a maximum of four levels of nesting.

T5F0 OS has a fast CPU speed (in high-performance mode, an average of 200-250 instructions can be executed in 1uS), and due to the short running time of interrupt programs, its real-time performance is already very high, it is not recommended for users to use interrupt nesting, which leads to complex program architecture. It is recommended to directly close the interrupt (EA=0) during the execution of each interrupt service program, and then open the interrupt (EA=1) when exiting.



#### 3.14 8051 Instruction Set for OS CPU Core

| Instruction Format       | Instruction<br>length | Instruction<br>cycle | Instruction Format  | Instruction<br>length | Instruction cycle |
|--------------------------|-----------------------|----------------------|---------------------|-----------------------|-------------------|
| ADD/ADDC A, Rn           | 1                     | 1                    | MOV @Ri,direct      | 2                     | 2                 |
| ADD/ADDC A, direct       | 2                     | 2                    | MOV @Ri,#data       | 2                     | 2                 |
| ADD/ADDC A,@Ri           | 1                     | 2                    | MOV DPTR,#data16    | 3                     | 3                 |
| ADD/ADDC A,#data         | 2                     | 2                    | MOVC A, @A+DPTR     | 1                     | 3                 |
| SUBB A, Rn               | 1                     | 1                    | MOVC A, @A+PC       | 1                     | 3                 |
| SUBB A, direct           | 2                     | 2                    | MOVX A,@Ri          | 1                     | 3                 |
| SUBB A, @Ri              | 1                     | 2                    | MOVX A, @DPTR       | 1                     | 3                 |
| SUBB A,#data             | 2                     | 2                    | MOVX @Ri,A          | 1                     | 3                 |
| INC/DEC A                | 1                     | 1                    | MOVX @DPTR, A       | 1                     | 3                 |
| INC/DEC Rn               | 1                     | 1                    | PUSH/POP            | 1                     | 2                 |
| INC/DEC direct           | 2                     | 2                    | XCH A, Rn           | 1                     | 1                 |
| INC/DEC @Ri              | 1                     | 2                    | XCH A,direct        | 2                     | 2                 |
| INC DPTR                 | 1                     | 1                    | XCH A, @Ri          | 1                     | 2                 |
| MUL AB                   | 1                     | 4                    | XCHD A,@Ri          | 1                     | 2                 |
| DIV AB                   | 1                     | 4                    | ACALL addr11        | 2                     | 2                 |
| DA A                     | 1                     | 1                    | LCALL addr16        | 3                     | 3                 |
| ANL/ORL/XRL A, Rn        | 1                     | 1                    | RET/RETI            | 1                     | 4                 |
| ANL/ORL/XRL A, direct    | 2                     | 2                    | AJMP addr11         | 2                     | 2                 |
| ANL/ORL/XRL A,@Ri        | 1                     | 2                    | LJMP addr16         | 3                     | 3                 |
| ANL/ORL/XRL A,#data      | 2                     | 2                    | SJMP rel            | 2                     | 3                 |
| ANL/ORL/XRL direct, A    | 2                     | 2                    | JMP @A+DPTR         | 1                     | 3                 |
| ANL/ORL/XRL direct,#data | 3                     | 3                    | JZ/JNZ/JC/JNC rel   | 2                     | 3                 |
| CLR A                    | 1                     | 1                    | JB/JNB/JBC          | 3                     | 4                 |
| CPL A                    | 1                     | 1                    | CJNE A, direct, rel | 3                     | 4                 |
| RL/RR A                  | 1                     | 1                    | CJNE A,#data,rel    | 3                     | 4                 |
| RLC/RRC A                | 1                     | 1                    | CJNE Rn,#data,rel   | 3                     | 4                 |
| SWAP A                   | 1                     | 1                    | CJNE @Ri,#data,rel  | 3                     | 5                 |
| MOV A, Rn                | 1                     | 1                    | DJNZ Rn,rel         | 2                     | 3                 |
| MOV A, direct            | 2                     | 2                    | DJNZ direct,rel     | 3                     | 4                 |
| MOV A,@Ri                | 1                     | 2                    | NOP                 | 1                     | 1                 |
| MOV A,#data              | 2                     | 2                    | CLR/SETB C          | 1                     | 1                 |
| MOV Rn, A                | 1                     | 1                    | CLR/SETB bit        | 2                     | 2                 |
| MOV Rn, direct           | 2                     | 2                    | CPL C               | 1                     | 2                 |
| MOV Rn,#data             | 2                     | 2                    | CPL bit             | 2                     | 2                 |
| MOV direct, A            | 2                     | 2                    | ANL C,bit           | 2                     | 2                 |
| MOV direct, Rn           | 2                     | 2                    | ANL C,/bit          | 2                     | 2                 |
| MOV direct1, direct2     | 3                     | 3                    | ORL C,bit           | 2                     | 2                 |
| MOV direct,@Ri           | 2                     | 2                    | ORL C,/bit          | 2                     | 2                 |
| MOV direct,#data         | 3                     | 3                    | MOV C,bit           | 2                     | 2                 |
| MOV @Ri,A                | 1                     | 1                    | MOV bit,C           | 2                     | 2                 |

When the operating frequency of T5F0 is 74.6496MHz (low-power mode), one instruction cycle (1T) takes 13.396nS.

When the operating frequency of T5F0 is 298.5984MHz (high-performance mode), one instruction cycle (1T) takes 3.349nS.

For example, when T5F0 operates in high-performance mode, the following code will output a 37.3248MHz square wave on the P3.3 IO

;2T ;2T

| OUTTEST: | CPL   | P3. 3   |
|----------|-------|---------|
|          | A.JMP | OUTTEST |

port.



# 4. Simulation Debugging

With the help of the HME05 simulator (which requires the installation of the corresponding USB driver), users can connect to the JTAG interface of T5F0 and perform code IAP debugging and simulation running in the Keil development environment.

During simulation debugging, pay attention to the following:

(1) The JTAG interface must be selected to the OS CPU and must be in JTAG mode, where OS/GUI (PIN # 21)=1 JTAGS (PIN # 25)=0. There are corresponding jumper selection and instructions on the DWIN evaluation board.
(2) Install the AGDI driver to enable Keil to support T5F0 and HME05 simulators. After installation, select and configure according to the following diagram. And copy the header files (\*. INC or \*. h) of the T5F0 OS CPU to the directory:KEIL/C51/INC/DWIN.

| 🕎 C:\Keil\C51\Examples\Hello\He              |                                                                        |                                                                    | _ 8 >          |
|----------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|
| Eile Edit View Project Flash Debu            | and the dependence of the second statement of the second statements    |                                                                    |                |
| 🗋 🎽 😹 🎒   A 🛶 🖄   🕫 P                        |                                                                        | COFF08: 🕒 🔍 🔌 🔍 🗉 🔿 🔗 🍓 🔳 🔹                                        |                |
| Simulator                                    | 🛛 💦 📥 🖻                                                                |                                                                    |                |
| Project 🛛 🗘 🗙                                | 1                                                                      |                                                                    |                |
| E- 🔁 Simulator                               | <u>\</u>                                                               |                                                                    |                |
| E Source Group 1                             | Options for Target 'Simulator'                                         | ×                                                                  |                |
|                                              | Nevice Target   Output   Listing   User   C51                          | AS1   BL51 Locate   BL51 Misc   Debug   Vtilities                  |                |
|                                              |                                                                        |                                                                    |                |
|                                              | Database DWIN Device                                                   |                                                                    |                |
|                                              | Vendor: DWIN                                                           |                                                                    |                |
|                                              | Device: T5                                                             | Use Extended Linker (LX51) instead of L51                          |                |
|                                              | Toolset: C51                                                           | □ Use Extended Assembler (AX51) instea                             |                |
|                                              | DWIN T5 Device                                                         |                                                                    |                |
|                                              |                                                                        |                                                                    |                |
|                                              | Options for Target 'Simulator'                                         | ×                                                                  |                |
| I                                            | Device   Target   Output   Listing   User   C51                        | A51   BL51 Locate   BL51 Mise Debug   Utilities                    |                |
|                                              | C Use Simulator Settings                                               | Lyse: HME 8051 Emulator     ✓ Settings                             |                |
|                                              | Limit Speed to Real-Time                                               | Gettings                                                           |                |
|                                              |                                                                        |                                                                    |                |
|                                              | ✓ Load Application at Startup     ✓ Run to main() Initialization File: | Load Application at Startup     Run to main() Initialization File: |                |
|                                              | Initialization File:                                                   |                                                                    |                |
|                                              |                                                                        |                                                                    |                |
|                                              | Restore Debug Session Settings                                         | Restore Debug Session Settings                                     |                |
|                                              | Breakpoints     Toolbox     Watch Windows & Performance Analyzer       | Breakpoints     Toolbox     Watch Windows                          |                |
|                                              | Memory Display                                                         | Memory Display                                                     |                |
| <b>⊡ P ()</b> B   <b>{}</b> F   <b>0</b> , T |                                                                        |                                                                    |                |
| Build Output                                 | CPU DLL: Parameter:                                                    | Driver DLL: Parameter:                                             | <b>д</b> )     |
|                                              | S8051.DLL                                                              | S8051.DLL                                                          | 12             |
|                                              |                                                                        |                                                                    |                |
|                                              |                                                                        |                                                                    | 2              |
| 1                                            | Dialog DLL: Parameter:                                                 | Dialog DLL: Parameter:                                             |                |
| #### ○○ ○ ○ ○ ○ ○ ○○ ○○                      | DCore51.DLL PR8051XC                                                   | TCore51.DLL pR8051XC                                               |                |
| 29开始 🥞 🥑 🕑 🏵 🎽                               |                                                                        |                                                                    | <b>«</b> 16:50 |

(3) Before setting a breakpoint to read the contents of the data storage (XDATA), it is necessary to ensure that DPC=0x00, otherwise the data will be misaligned.

(4) Before simulation, it is necessary to ensure that the OS CPU code 0x00F8 burned in T5F0 Flash starts at 0xFF FF 44 57 49 4E 54 35, otherwise the JTAG interface of the OS CPU will be disabled and the HME05 simulator cannot be connected.

(5) When porting code to standard C or other 8051 platforms, users should pay attention to selecting the corresponding T5F0 file for SFR header loading during compilation INC or H file. If the SFR definition in the customer code is different from the T5F0 definition, the SFR header file in the code or T5F0 can be modified to be consistent.



(6) HME05 achieves hardware simulation by downloading code to the Code RAM of the T5F0 OS CPU, and the code is not burned into the on-chip Flash. To burn the code into the chip, it is necessary to use the SD card interface. When the SD interface is burned, the T5F0 underlying software will automatically change the 0x00F8 position of the OS code to 0x0000 (JTAG interface prohibited) 44 57 49 4E 54 35.

T5F0 OS CPU adopts the standard 8051 architecture, which is identical to the instruction set except for slight differences in SFR and extended peripheral access. When porting the user's original 8051 code, pay attention to the following aspects to quickly complete it:

(1) According to the hardware design, after resetting, use the startup. A51(C51 startup code) or initcpu() assembly program provided by DWIN to simply modify and configure the unique SFR and parameter settings of T5F0.

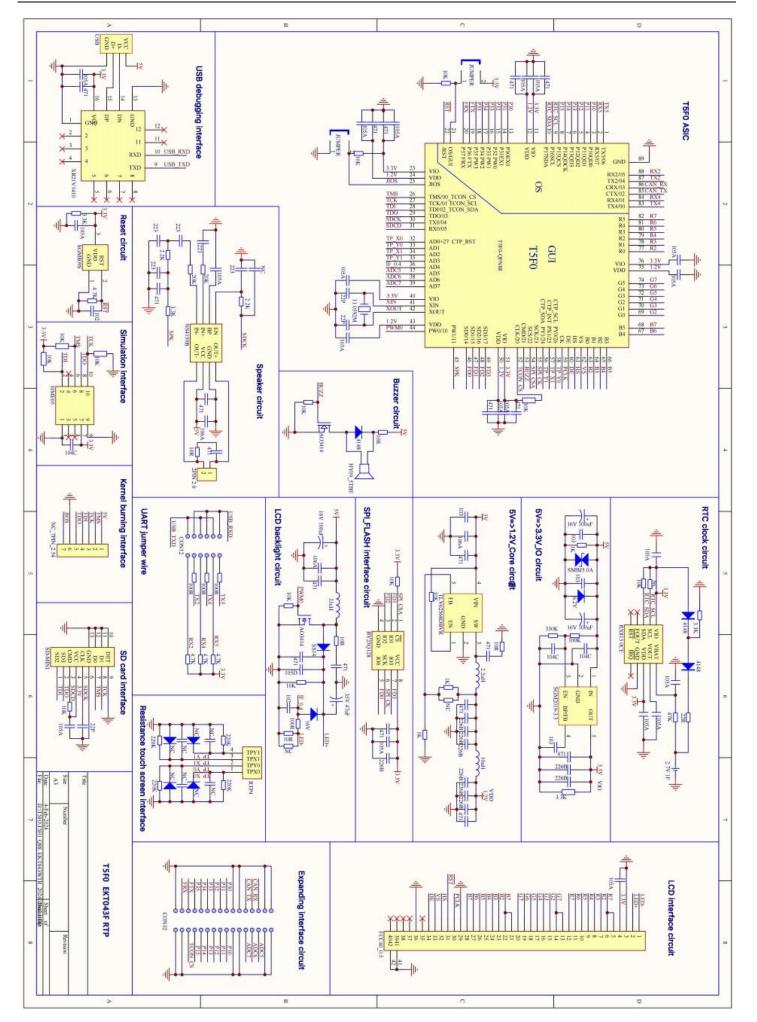
(2) The IO output mode of T5F0 is controllable. When switching between input and output modes, it is necessary to configure the PxMDOUT register accordingly, otherwise errors will occur.

(3) Close nested interrupts, when each interrupt service program enters, EA=0; when exits, EA=1

(4) When using off chip RAM (XRAM) for data storage in the code, please note that the 32KB data RAM starting address of T5F0 starts from 0x8000.

(5) Write 0xFFFF (or 0x0000 to disable JTAG interface)44 57 49 4E 54 35 at position 0x00F8.

(6) Using MDU/FMU hardware operation acceleration to optimize the algorithm of the original code. The UI function can be implemented on the DGUS configuration development running on the GUI core or TA instruction set development platform. User code can be processed through simple read and write variable memory, greatly improving product performance and enhancing research and development efficiency.




# 5. EK043F Evaluation Board

EK043F evaluation board adopts a 4.3-inch 480 \* 272 TFT screen driven by T5F0, and is equipped with a four wire resistive touch screen.









# **Revision Records**

| Version | Revise Date | Content       | Editor  |
|---------|-------------|---------------|---------|
| 1.0     | 2024-03-26  | First Edition | Xu Ying |

Please contact us if you have any questions about the use of this document or our products, or if you would like to know the latest information about our products:

- Customer service Tel: +86 400 018 9008
- Customer service email: dwinhmi@dwin.com.cn
- DWIN Developer Forum: <u>https://forums.dwin-global.com/</u>

Thank you all for continuous support of DWIN, and your approval is the driving force of our progress!